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ABSTRACT
Graph Neural Networks (GNNs) are proven to be powerful models
to generate node embedding for downstream applications. However,
due to the high computation complexity of GNN inference, it is
hard to deploy GNNs for large-scale or real-time applications. In
this paper, we propose to accelerate GNN inference by pruning the
dimensions in each layer with negligible accuracy loss. Our pruning
framework uses a novel LASSO regression formulation for GNNs
to identify feature dimensions (channels) that have high influence
on the output activation. We identify two inference scenarios and
design pruning schemes based on their computation and memory
usage for each. To further reduce the inference complexity, we
effectively store and reuse hidden features of visited nodes, which
significantly reduces the number of supporting nodes needed to
compute the target embedding. We evaluate the proposed method
with the node classification problem on five popular datasets and
a real-time spam detection application. We demonstrate that the
prunedGNNmodels greatly reduce computation andmemory usage
with little accuracy loss. For full inference, the proposed method
achieves an average of 3.27× speedup with only 0.002 drop in F1-
Micro onGPU. For batched inference, the proposedmethod achieves
an average of 6.67× speedup with only 0.003 drop in F1-Micro on
CPU. To the best of our knowledge, we are the first to accelerate
large scale real-time GNN inference through channel pruning.
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1 INTRODUCTION
Recently, Graph Neural Networks (GNNs) have attracted the atten-
tion of many AI researchers due to the high expressive power and
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generalizability of graphs in many applications. The node embed-
ding generated from GNNs outperforms other graph representation
learning methods when fed into downstream applications like node
classification, edge prediction, and graph classification. Table 1
shows some popular applications of GNNs on various size graphs
with different latency requirements. The knowledge graphs used
in few-shot learning could only contain around one hundred of
nodes and hundreds of edges, while the social network graphs could
have billions of nodes and trillions of edges. Most of these GNN
applications are latency sensitive at inference. For example, the
applications related to Computer Vision need to perform stream-
ing real-time inference on the data captured by the cameras. The
applications related to fraud and spam detection need to identify
malicious posts and transactions as fast as possible to avoid the
property loss of the victim users. In addition to latency, some vision
applications that utilize GNNs [8] need to perform inference on
edge devices with limited computing power and memory, such as
self-driving cars with 3D-cameras and radars.

Compared with traditional graph analytics algorithms, GNNs
have high computation cost as one node needs to gather and aggre-
gate feature vectors from all the neighbors in its receptive field to
compute a forward pass. To accelerate the training of GNNs, many
works [4, 5, 13, 42] adopt stochastic node sampling techniques to
reduce the number of supporting neighbors. GraphNorm [3] nor-
malizes the node attributes to speedup the convergence. As a result,
GNNs training scales well with graph size. It only takes seconds
to minutes to train on a graph with millions of nodes. However,
many GNN applications struggle at inference when deployed to
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Figure 1: Accuracy and throughput of full inference on the
Reddit dataset on GPU.
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Table 1: GNN Applications with their conventional graph
sizes (in number of nodes) and latency requirement.

Applications Nodes Lat.
Knowledge Graph

Few-shot image classification [10, 23] 102 − 103 ms

Relation extraction and reasoning [24] 103 − 106 ms-s

Image Graph

Point cloud segmentation [6, 30] 103 − 106 ms

Spatio-Temporal Graph

Traffic prediction [11] 103 − 106 s

Action recognition [7, 18] 102 − 103 ms

Social Network Graph

Recommending system [9, 39, 44] 106 − 109 ms

Spam detection [17, 19, 29] 106 − 109 ms

production environment. Performing the full forward pass with all
the neighbors at inference leads to high memory usage and latency.
The node sampling techniques, when applied to inference, struggle
to maintain high accuracy on every sample. In consequence, GNN
applications either turn to traditional graph analytics algorithms
with lower complexity, or rely on obsolete (not updated recently)
embedding. For example, Youtube [12] turns to label propagation to
detect abusive videos. Pinterest [39] has to use obsolete embedding
generated with the MapReduce framework in an offline process.
Taobao [19] runs the GNN based malicious account detection daily,
instead of immediately after one transaction pops. Even with the
compromise of offline inference, GNN inference is still expensive
on large graphs. It is reported that a cluster with 378 computing
nodes still needs one day to generate embedding for 3 billion nodes
[39]. In addition, GraphBERT [45] shows that pre-trained GNN
models could be directly (or with light fine-tuning) transferred to
address new tasks, which makes accelerating GNN inference more
important.

Although it has not caught much attention of researchers, accel-
erating GNN inference is as important as accelerating GNN training.
Based on these GNN applications, we define two inference scenar-
ios – full inference where the target nodes are all the nodes (or a
large portion of nodes, i.e., the test set) in the graph, and batched
inference where the target nodes are a few nodes. Full inference
applies to GNN applications that operate on small to medium size
graphs, or perform offline inference on large graphs. Batched infer-
ence applies to GNN applications that have strict requirements on
latency, or need to be executed on edge devices such as embedded
systems and FPGAs. Full inference performs forward propagation
on all the nodes in the graph, while batched inference only propa-
gates from the selected supporting nodes of the target nodes. For
batched inference, the number of supporting nodes grows exponen-
tially with the number of GNN layers, which is referred to as the
“neighbor explosion” problem. In this work, we propose to accel-
erate GNN inference by reducing the input feature dimensions in
each GNN layer and reusing the hidden features for visited nodes.

Our pruning framework works on most GNN architectures and can
significantly improve their inference throughput with little or no
loss in accuracy. The main contributions of this work are

• We develop a novel LASSO regression formulation to prune
input channels for GNN layers, which outperforms random
and greedy pruning methods.

• We design different pruning schemes for full inference and
batched inference addressing their computation complexity
and memory usage.

• We develop a novel technique to store and reuse the hid-
den features of visited nodes for batched inference, which
mitigates the “neighbor explosion” problem.

• We evaluate the performance of the pruned models on
five popular datasets and a real-time spam detection appli-
cation. The pruned GNN models greatly reduce the com-
plexity and memory usage with negligible accuracy loss.
For full/batched inference, the pruned models reduce the
computation to 0.19×/0.10× and memory requirements to
0.43×/0.18× with only 0.002/0.003 F1-Micro drop on aver-
age. The pruned models achieve an average of 3.27×/6.67×
speedup for full/batched inference on GPU/CPU.

2 BACKGROUND
2.1 Graph Neural Networks
For a graph 𝐺 (𝑉 , 𝐸) where each node 𝑣 ∈ 𝑉 has node attributes
𝒉(𝑣) ∈ R𝑓 , GNNs iteratively gather and aggregate information
from neighbors to compute node embedding. Denote the matrix
of all the output features 𝒉(𝑖) (𝑣) stacked horizontally in layer-𝑖
by 𝒉(𝑖) . Let 𝑨̃ be the normalized adjacency matrix. In general, the
output features 𝒉(𝑖) of layer-𝑖 is computed by

𝒉(𝑖) = 𝜎
(
𝐾

∥
𝑘=𝐾 ′

𝑨̃𝑘𝒉(𝑖−1)𝑾 (𝑖)
𝑘

)
(1)

where ∥ denotes the horizontal concatenation operation.𝑾 (𝑖)
𝑘

is
the learnable weight matrix of order 𝑘 in layer-𝑖 . And 𝜎 (·) denotes
the ReLU activation. We stack multiple layers and let the input
of the first layer 𝒉(0) = 𝒉 to compute the node embedding. For
𝐾 ′ = 𝐾 = 1, Equation 1 shows the forward propagation of vanilla
Graph Convolutional Network [16]. For𝐾 ′ = 0, 𝐾 = 1, Equation 1 is
the GraphSAGE [13] architecture. For 𝐾 ′ = 0, 𝐾 > 1, Equation 1 is
the MixHop [1] architecture. For other variants of GNNs [28, 33, 34],
Equation 1 could be adapted by adding residue connections or
alternating the normalized adjacency matrix.

2.2 Case Study: GraphSAGE Inference
We perform a case study to analyze the complexity and memory
usage for both inference scenarios on the widely used GraphSAGE
architecture. We choose to analyze the GraphSAGE architecture as
it achieves top tier accuracy with relatively high throughput (see
Figure 1). For the GraphSAGE architecture, 𝐾 ′ = 0, 𝐾 = 1 and the
adjacency matrix 𝑨 is normalized by 𝑨̃ = 𝑫−1𝑨 where 𝑫 is the
diagonal degree matrix.
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Figure 2: Illustration of one pruned GNN layer. The × operator denotes sparse or densematrixmultiplication while the shaded
areas denote the pruned channels. The blue areas in the weight matrices𝑾 (𝑖)

𝑘
and the output features 𝒉′(𝑖) before activation

show the pruned channels in the next GNN layer. The red areas in weight matrices𝑾 (𝑖)
𝑘

and the input features 𝒉(𝑖−1) show the
pruned channels in this GNN layer.

2.2.1 Full Inference. To perform full inference that computes node
embedding for all the nodes in the graph, we batch the node-wise ag-
gregation and compute sparse-densematrixmultiplication 𝑨̃·𝒉(𝑖−1) .
Denote the input and output feature dimensions of the weight ma-
trices𝑾 (𝑖)

𝑘
by 𝑓 in(𝑖)

𝑘
and 𝑓 out(𝑖)

𝑘
(all input feature dimensions are

equal in each layer). Let |𝑉 | be the number of nodes in the graph.
Assume the average degree of the whole graph is 𝑑 . The average
complexity per node 𝐶 (𝑖)

full and total memory consumption𝑀 (𝑖)
full of

full inference are

𝐶
(𝑖)
full = O

(
𝑑 min(𝑓 in(𝑖)1 , 𝑓

out(𝑖)
1 ) +

1∑︁
𝑘=0

𝑓
in(𝑖)
𝑘

𝑓
out(𝑖)
𝑘

)
𝑀

(𝑖)
full = |𝑉 |

(
𝑓
in(𝑖)
0 + 𝑓 out(𝑖)0 + 𝑓 out(𝑖)1

)
+

1∑︁
𝑘=0

𝑓
in(𝑖)
𝑘

𝑓
out(𝑖)
𝑘

(2)

As the output features of all nodes are computed in every layer, the
computation and memory consumption distribute evenly in each
layer. Each branch in one layer also contributes to a non-negligible
portion of the computation and memory usage.

2.2.2 Batched Inference. For batched inference, the GraphSAGE
architecture aggregates from 𝐿-hop neighbors. Denote the set of
target nodes to infer by𝑉𝑡 . In layer-𝑖 , the average number of support-
ing nodes is |𝑉𝑡 |

∑𝐿−𝑖+1
𝑙=0 𝑑𝑙 , which leads to the average complexity

per node dominated by the complexity in the last layer

𝐶batched =

𝐿∑︁
𝑖=1

𝐶
(𝑖)
batched =

𝐿∑︁
𝑖=1

𝐿−𝑖∑︁
𝑙=0

𝑑𝑙𝐶
(𝑖)
full = O(𝑑𝐿−1𝐶 (1)

full) (3)

Similarly, the memory consumption also peaks in the first layer
with the most supporting neighbors.

2.3 Related Work
There are many existing works on channel pruning in Deep Neural
Networks. The works [14, 31] prune the channels in the convolu-
tion layer by applying penalized regression on the input channels.
ThiNet [20] prunes the channels based on statistics from the next
layer. The work [38] forces some channels to freeze during the train-
ing and remove them at inference. Unlike performing inference on
texts or images where each instance is independent with the others,
inference of nodes depends on the graph structure and attributes
of other supporting nodes. The computation pattern is also differ-
ent for different inference scenarios. These two challenges make
it hard to directly apply the existing channel pruning techniques
on GNNs. Recently, several works [22, 32] have tried to accelerate
training and inference of GNNs by removing the nonlinearity of
internal layers and pre-computing the feature aggregation (𝑨𝑘𝒉).
PPRGo [2] accelerates inference by performing less aggregation
as in training. These methods require pre-processing on either the
node attributes or the adjacency matrix, which do not apply to
evolving graphs. TinyGNN [36] speeds up inference by training
a shallow student GNN supervised by a teacher GNN. Recently,
several works have tried to accelerate the full batch propagation
in Equation 1 through matrix partitioning [41], node re-ordering
[43], and runtime scheduling [26]. Others have developed hard-
ware accelerators [37, 40] and in-memory processors [25]. These
hardware-specific optimization techniques do not address the basic
problem – high computation complexity of GNNs. On the other
hand, although not aiming at rapid inference, some works [35, 46]
propose to prune the edges to reduce the noise aggregated from
neighbors. However, they are limited to knowledge graphs with
specific inference queries.

In contrast, we propose a general method to reduce the inference
complexity by directly pruning the input channels. Our method
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Figure 3: Illustration of forward propagation on 𝐿 + 1-layer
GraphSAGEarchitecturewith storedhidden features. 𝑣 (𝑖) de-
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denote the unvisited and visited supporting nodes for the
branch 𝑘 = 1. The hidden features of the visited nodes 𝑢 (𝑖)

𝑣𝑖𝑠
are obtained directly from the stored hidden features.

in the case study in Section 2.2. The channel pruning in layer-𝑖 not
only ignores some input channels in 𝒉(𝑖−1) , but also leads to the
reduction of output channels in the weight matrices𝑾 (𝑖)

𝑘
of the

previous layer. Thus, when pruning the whole network, we prune
reversely from the output layer to the input layer. Dense layers are
treated as GNN layers with 𝐾 ′ = 𝐾 = 0.

3.3.1 Pruned Full Inference. For full inference, we simply prune
each layer with a constant budget 𝜂 except the input layer as the
computation and memory distribute evenly in each layer. We do
not remove any dimensions of the raw node attributes in layer-0.
The complexity per node and memory usage of the pruned models
range in (𝜂2, 𝜂) and (𝜂, 1), compared with the original model. For
other GNN architectures that follow similar forward propagation
in Equation 1 like JK [34] and SIGN [22], our pruning method could
be directly applied with constant budget.

3.3.2 Pruned Batched Inference. The major challenge in batched
inference is the “neighbor explosion” problem where the number of
supporting nodes grows exponentially as the network goes deeper.
We need to visit the node attributes for an exponential amount of
nodes to compute the embedding for one target node. Therefore, we
focus on reducing the computation and memory usage in the first
layer by reducing the channels in the first layer and the second layer.
In the first layer, we focus on the branches that have more neighbors
than others. For the GraphSAGE architecture with pruning budget
𝜂, we prune the 𝑘 = 1 branch in layer-1 and the whole layer-2 with
budget 𝜂, which reduces the dominant terms in the computation
and memory usage by 𝜂.

In addition to channel pruning, we store the hidden features
𝒉(𝑖) of visited nodes in the middle layers. Their neighbors, when
aggregating from them, directly aggregate from the stored hidden
features, instead of iteratively looking at farther neighbors. Figure
3 shows the supporting nodes in each layer with stored hidden
features. Ideally, if we store the hidden features for all visited nodes,
the batched inference would have exactly the same complexity as
full inference (i.e., 𝑑 = 1 in Equation 3). However, indexing and
storing the hidden features incur extra data transfer which increases
the latency. On evolving graphs, out-dated hidden features also

Table 2: Dataset statistics. The Attr. column shows the di-
mension of the node attributes. (s) in Classes denotes multi-
class single-label classification problem while (m) denotes
multi-class multi-label classification problem. The Test%
column shows the percentage of test nodes.

Dataset Nodes Edges Attr. Classes Test%
Flickr 89,250 899,756 500 7(s) 25%
Arxiv 169,343 1,166,243 128 40(s) 29%
Reddit 232,965 11,606,919 602 41(s) 24%
Yelp 716,847 6,977,410 300 100(m) 10%

Products 2,449,029 61,859,140 100 47(s) 88 %

YelpCHI 67,395 287,619 769 2(s) 23%

affect accuracy. The portion of hidden features to store in each
batch could be dynamically determined by the task-specific target
latency and accuracy. Applications with high latency tolerance
could potentially save more hidden features to increase throughput.
For out-dated hidden features, we can set a threshold and discard
them when the accuracy drop reaches the threshold. In practice,
we find storing the hidden features for the root nodes at inference
is a good balance point for the datasets we use. In addition, the root
nodes usually have the most up-to-date hidden features in batched
inference.

3.3.3 Detailed Optimization Procedure. In the experiment, we per-
form one iteration on each sub-problem instead of multiple itera-
tions [14]. For the sub-problem of 𝑾̂ , instead of the least square
solution, we also apply SGD as the size of 𝑿 could be large. We par-
tition the matrix 𝑨̃𝑘𝒉(𝑖−1) and 𝑿 (𝑖)

𝑘
row-wise to form mini-batches.

Define one epoch as performing SGD on the whole matrix once. To
optimize the whole problem, we first optimize several epochs on the
sub-problem of 𝜷 . At the end of each epoch, we slightly increase the
penalty factor 𝜆 until pruning budget is met or over-penalized (all
values in 𝜷 are decreasing). Note that as the mask values converge
to zero, some mask values may be exactly zero while the others are
close to zero. We clip the masks with small values to zero according
to the pruning budget to make sure the corresponding channels are
completely removed. Then, we optimize the sub-problem for 𝑾̂ (𝑖)

𝑘
until converge. The final weights of the pruned layer are obtained
by applying the mask 𝜷 (𝑖)

𝑘
to the weights 𝑾̂ (𝑖)

𝑘
.

4 EXPERIMENTS
We evaluate the performance of the proposed method with the
node classification problem on five popular datasets: 1. Flickr [42]
classifying the types of user-uploaded images, 2. Arxiv [15] classi-
fying subject areas of Arxiv CS papers, 3. Reddit [13] classifying
communities of Reddit posts, 4. Yelp [42] classifying types of busi-
nesses on Yelp, 5. Products [15] classifying categories of products
on Amazon. For batched inference, we also evaluate with a real
world spam detection application on the YelpCHI[21] dataset that
identifies spam reviews on Yelp. We adopt supervised and inductive
settings on all datasets.

For the models to prune, we use the 2-layer GraphSAGE [13]
architecture (Equation 1 with 𝐾 ′ = 0, 𝐾 = 1) with the common



Table 3: Pruned full inference results on GPU. The ∗ nodes in the plots denote the results of the referencemodels (no pruning).

Flickr Arxiv Reddit Yelp
Budget - 2× 4× 8× - 2× 4× 8× - 2× 4× 8× - 2× 4× 8×
F1-Micro 0.511 0.517 0.520 0.517 0.716 0.712 0.710 0.706 0.966 0.966 0.964 0.959 0.654 0.654 0.651 0.640

#kMACs/node 545 211 94 48 1242 360 115 40 317 172 112 85 1490 485 180 77
Mem. (MB) 531 269 221 199 1997 1002 505 257 852 738 681 652 8459 4256 2155 1225
Thpt. (mN/s) 2.69 5.28 9.11 15.13 1.11 1.98 3.79 6.72 2.47 4.30 7.17 10.35 0.90 1.95 3.05 4.40
Thpt. Impr. - 1.96× 3.39× 5.63× - 1.79× 3.42× 6.07× - 1.74× 2.90× 4.19× - 2.16× 3.38× 4.82×

F1mic-Thpt
0 4 8 12 16

0.520
0.510
0.500

0 2 4 6 8

0.716
0.706
0.696

0 3 6 9 12

0.966
0.956
0.946

0 1 2 3 4 5

0.654
0.644
0.634

hidden feature size 256, 512, 128, 512, 512 on the five node classifi-
cation datasets, respectively. On the YelpCHI dataset, we use 128
as the hidden feature size. We use the standard single floating
point precision for both the original models and the pruned mod-
els. To obtain trained models to prune, we adopt the sub-graph
based training technique from GraphSAINT [42] with the random
walk sampler. For each dataset, we prune with three global budgets
𝜂 = 0.5, 0.25, 0.125 and obtain three pruned models (2×, 4×, 8×) in
different sizes. We choose 1024 as the batch size and use the ADAM
optimizer for SGD in the two sub-problems. After pruning, we
re-train the pruned models until convergence.

To test the speedup of the pruned models, we measure the
throughput and latency of full inference on the first four datasets
with GPU, and batched inference on all five datasets with CPU and
GPU. For batched inference, we form batches randomly from the
nodes in the test set until all the nodes in the test set are covered.
All accuracy (F1-Micro) results are for the test nodes only. The
pruning framework is implemented using PyTorch and Python3.
We run all experiments on a machine with 64-core ThreadRipper
2990WX CPU with 256GB of DDR4 RAM, and a single NVIDIA RTX
A6000 GPU with 48GB of GDDR6 RAM. All the accuracy results are
averages of three runs. For batched inference, we limit the number
of hop-2 neighbors to be 32.

4.1 Performance of Single Layer Pruning
We compare the proposed pruning method (LASSO) with prun-
ing the channels with small L1-norm in the corresponding weight
matrix (Max Res.) and randomly pruning the channels (Random).
Figure 4 shows the loss and F1-Micro curves under different num-
bers of pruned channels in both branches of layer-2 on the Red-
dit dataset. We apply layer-wise re-training for all three pruning
methods. The proposed pruning method clearly outperforms other
pruning methods, especially when the number of pruned channels
is more than 30%.

4.2 Full Inference
Table 3 shows the results for full inference on GPU. The computa-
tion complexity is measured in thousands of Multiplication-and-
ACcumulation operations per node (#kMACs/node). The through-
put is measured in thousand of target nodes computed per second

(kN/s) or million of target nodes computed per second (mN/s). For
memory usage, we adopt in-place point-wise operations without
storing the intermediate values as we only need to compute forward
propagation at inference. The latency is the GPU execution time of
a complete forward propagation. The throughput and memory us-
age are calculated for all the nodes in the graphs. In the F1mic-Thpt.
row, the x and y axes are the throughput (in mN/s) and F1-micro.
On the Flickr dataset, the pruned models achieve higher F1-Micro
than the original models, possibly due to better convergence of
smaller models. The reduction in computation and memory usage
depends on the dimension of the input node attributes. We achieve
close to 𝜂2 reduction in computation complexity and 𝜂 reduction in
memory usage on the Arxiv and Yelp dataset with small input node
attributes dimensions. We achieve an average of 3.27× speedup on
GPU with less than 0.006 drop in F1-Micro for all datasets with
4× pruned models. On the Flickr, Arxiv and Reddit datasets, the
8× pruned models still achieve similar accuracy as the original
models. The pruned models for full inference reduce the latency on
small datasets to meet the requirements for real-time applications
and increase the throughput for large datasets. The pruned models
also make it possible to run full batch inference of small graphs
on edge devices with limited memory. We observe consistent GPU
utilization of around 50% for models with different pruning budgets.
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pruning method in the left figure.



Table 4: Pruned batched inferences results on CPU (batch size=512). The second rows in each metric show the results with
stored hidden features. The ∗ nodes in the plots denote the results of the reference models (no pruning, w/o store).

Arxiv Reddit Yelp Products
Budget - 2× 4× 8× - 2× 4× 8× - 2× 4× 8× - 2× 4× 8×
F1-Micro 0.714 0.710 0.709 0.707 0.966 0.966 0.964 0.955 0.654 0.654 0.652 0.646 0.792 0.791 0.785 0.764
w/ store 0.714 0.710 0.709 0.707 0.966 0.966 0.964 0.954 0.653 0.653 0.652 0.646 0.792 0.792 0.786 0.766

#kMACs/node 3135 1620 846 395 17665 7409 3288 1052 7870 3696 1650 840 3952 2044 1090 520
w/ store 2118 1096 577 286 6225 2627 1171 381 3908 1888 895 485 1590 827 446 240

Mem. (MB) 85 49 30 14 3086 1551 790 409 225 122 53 26 96 65 49 28
w/store 72 42 23 10 1431 568 288 147 165 92 39 19 70 37 21 10
Lat. (ms) 27 20 17 13 411 217 128 85 56 38 25 16 120 58 48 35
w/ store 15 8 6 5 101 56 34 24 22 14 10 7 47 30 27 20
Lat. Impr. - 1.33× 1.54× 2.12× - 1.90× 3.22× 4.86× - 1.46× 2.20× 3.59× - 2.09× 2.50× 3.42×
w/ store 1.82× 3.24× 4.18× 5.29× 4.09× 7.35× 12.26× 17.04× 2.50× 3.84× 5.84× 8.08× 2.56× 3.99× 4.40× 6.02×

F1mic-Lat.
w/o store
w/ store 0 10 20 30

0.714
0.704
0.694

0 150 300 450

0.966
0.956
0.946

0 20 40 60

0.654
0.644
0.634

0 40 80 120

0.792
0.782
0.772

On the Flickr, Arxiv, Reddit, and Yelp dataset, our pruningmethod
takes 2.35, 4.34, 6.35, and 32.15 seconds in pruning and 1.36, 6.38,
10.02, and 346.21 seconds in re-training. Due to the small number
of parameters in the pruned models, the re-training of the pruned
models takes less time than training the original models.

4.3 Batched Inference
Table 4 shows the results for batched inference onCPU.We calculate
the memory usage by the amount of memory needed to compute
the forward path of one batch. The attributes and stored hidden
features of the supporting nodes in each batch are fed into CPU
from DDR4 (peak bandwidth 68GB/s) and GPU from GDDR6 (peak
bandwidth 768GB/s) memory. In the F1mic-Thpt. row, the x and
y axes are the throughput (in kN/s) and F1-micro. We achieve 𝜂
reduction in computation complexity and memory usage on all
datasets for batched inference without stored hidden features. We
store the hidden features of training and validation nodes, and the
root nodes in each batch of inference. The storing of hidden features
further reduces an average of 33% of supporting nodes in layer-1.
We reduce the memory usage from 85-3086MB to 10-147MB, which
makes it possible to perform inference on edge devices like mobiles.
The memory usage also reflects an upper bound of the amount
of input node attributes needed to perform one batch of forward
propagation. On all five datasets, the pruned models with stored
hidden features achieve less than 30ms (up to 17× improvement)
latency on CPU with less than 0.012 F1-Micro drop. The pruned
models with stored hidden feature meet the requirements of most
real-time applications on CPU. On GPU, our 4× models achieve
4, 16, 4, 8ms latency without stored hidden features and 4, 6, 3, 6ms
latency with stored hidden features on the Arxiv, Reddit, Yelp,
and Products datasets, respectively. Compared with full inference,
batched inference requires less memory and computation for a
small number of target nodes. For latency-sensitive or large scale
applications, batched inference provides a light-weight and low-
latency solution. We observe 100% CPU utilization on all models,

and 20% to 50% GPU utilization on GPU depending on the model
size.

Figure 5.a shows the latency under different batch sizes on the
Reddit dataset on CPU. The latency grows linearly with the batch
size, which shows that our pruning method accommodates appli-
cations with different inference batch sizes. Figure 5.b shows the
trade-off between storing hidden features and extra latency and
drop in F1-Micro. Note that the extra latency is mostly caused by
the storing of the hidden features, which can be done offline.

4.3.1 Spam Detection Application. To evaluate the performance
of the proposed pruning technique on real-time applications, we
over-sample the YelpCHI [21] dataset 400 times to create a graph
with 27 million nodes which has similar scale as the Yelp website.
The nodes in the graph represent reviews for restaurants and hotels
in Chicago and are attached with timestamps. The task is to identify
spam reviews from the posted reviews between October 2011 and
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Figure 5: (a). Latency curves under different batch sizes on
the Reddit dataset on CPU. (b). Maximum extra latency and
accuracy drop curves with different percentages of stored
hidden features.
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Figure 6: Accuracy and maximum latency of each day in the
first month on the YelpCHI dataset. We only show the ac-
curacy without stored hidden features because the accuracy
with stored hidden features is very close.

October 2012. We adopt the strategy to perform inference on the
emerging reviews every 30 minutes and re-train the model every
month. The 1×(reference), 2×, 4×, and 8× models achieve 0.873,
0.871, 0.866, and 0.865 accuracy on the test set. Figure 6 shows
the accuracy and maximum latency of each day in the first month.
For inference with stored hidden features, the first few days have
higher latency due to the indexing and storing of the hidden features.
However, the latency is still lower than inference without stored
hidden features, even in the first few days.

4.4 Comparison with Other GNNs
We compare the throughput and accuracy of full inference with
GAT [28], SIGN [22], Jumping Knowledge Network (JK) [34], Graph-
SAGE [13], PPRGo [2] 1, GCN [16], SGC [32], and TinyGNN [36].
We use a similar two-layer (or equivalent of two-hop propagation)
architecture on all baselines except a one-layer student network
supervised by a two-layer teacher network for TinyGNN. Figure
1 shows the inference throughput and accuracy of various GNN
architectures on the Reddit dataset on GPU. Our 4×model achieves
top-tier accuracy, comparable with GAT, SIGN and GraphSAGE, but
with significant improvement in throughput (6.96×, 4.74×, 2.59×
with GAT, SIGN, and GraphSAGE, respectively).

4.4.1 Computation Comparison with Simplified GNNs. We com-
pare the accuracy and per node computation on the Reddit dataset
of our 4× pruning models with SGC, SIGN with (𝑟, 𝑠, 𝑡) = (2, 0, 0),
PPRGo with two-pass inference, TinyGNN with a 1-layer PAM stu-
dent network supervised by a 2-layer teacher network, and 2-layer
MLP with 128 hidden features (MLP-2). Table 5 shows the result of
the comparison with other simplified GNNs. The pre-processing
for both SGC and SIGN is to twice compute feature propagation
(𝑨̃2 · 𝒉(0) ) for 120 kMACs/node. If any graph structure or node
attributes change, the pre-processing needs to be re-computed. For
SGC, if the input node features are pre-processed, there is only one
MLP layer transforming the aggregate features to class probabilities,
leading to the lowest computation. SIGN has the highest per node
computation as the numbers of hidden units in the feedforward
1We tune the parameters of PPRGo to fit the supervised learning setting.

Pre-Proc. F1-micro #kMACs/node

Fu
ll
In
f. SGC - 0.949 146

✓ 25

SIGN(2,0,0) - 0.966 978
✓ 858

PPRGo - 0.937 148
TinyGNN - 0.957 273
ours-4× - 0.964 112

Ba
tc
he
d

In
f.

MLP-2 - 0.702 120
ours-4× w/o - 0.964 3288
ours-4× w/ - 0.964 1171

Table 5: Comparison of accuracy and per node computa-
tion for full inference and batched inference on the Reddit
dataset. The w/ and w/o in batched inference denotes with
and without stored hidden features.

layers are high (460 for GNN layers and 675 for the classification
layer). For full inference, our pruned model achieves higher accu-
racy than SGC and TinyGNN, and comparable accuracy to SIGN
with less computation. For batched inference, our pruned models
achieve remarkably higher accuracy than MLP.

5 CONCLUSION
We presented a novel method of pruning the input channels to
accelerate large scale and real-time GNN inference. We formulated
the GNN pruning problem as a LASSO optimization problem to
select from the input channels to approximate the output. We de-
veloped different pruning schemes according to the computation
complexity and memory usage in different inference scenarios. We
designed a unique technique for batched inference to further re-
duce computation by storing and reusing the hidden features. We
conducted experiments on real-world datasets to demonstrate that
the pruned models greatly reduce computation and memory usage
while still maintaining high accuracy. We showed the improve-
ment on latency and throughput of using the pruned models on
CPU and GPU. The light-weight pruned models are attractive to
energy-efficient devices like mobile processors and FPGA, as well
as applications like real-time recommendation and fraud detection
on social networks.
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