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ABSTRACT
Traditional graph-processing algorithms have been widely used
in Graph Neural Networks (GNNs). This combination has shown
state-of-the-art performance in many real-world network min-
ing tasks. Current approaches to graph processing in deep learn-
ing face two main problems. On the one hand, easy-to-use deep
learning libraries lack support for widely used graph-processing
algorithms and do not provide low-level APIs for building dis-
tributed graph-processing algorithms. On the other hand, existing
graph-processing libraries are not user-friendly for deep learning
researchers. Their graph primitives are not designed for batch pro-
cessing, which is essential for deep learning use cases. In this paper,
we present an efficient and easy-to-use graph engine that incorpo-
rates distributed graph processing into deep learning ecosystems.
We develop a distributed graph storage system with an efficient
batching technique to minimize communication overhead incurred
by Remote Procedure Calls (RPC) between computing nodes. We
propose an optimized method for distributed computation of Single
Source Personalized PageRank (SSPPR) using the Forward Push
algorithm based on lock-free parallel maps. Experimental evalua-
tions demonstrate significant improvement, with up to three orders
of magnitude in SSPPR throughput, of our graph engine compared
with the tensor-based implementation. Both methods offer neces-
sary usability with tensor operations, which are widely used for
graph processing in current deep graph libraries.
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1 INTRODUCTION
Integrating traditional graph-processing algorithms with Graph
Neural Networks (GNNs) has improved the state-of-the-art per-
formance of various real-world network mining tasks. Traditional
graph-processing algorithms are widely used to improve GNNs’
scalability and accuracy. Many existing methods train GNNs on
graph data that has been processed by algorithms such as shortest-
path [21], randomwalk [29, 32], and Personalized PageRank (PPR) [2,
31]. However, most existing works assume that the full graph topol-
ogy can be stored in a single machine, and are not optimized for
distributed settings. Many interesting real-world graph mining
problems involve graphs with billions of nodes and edges, requir-
ing distributed storage and computation across multiple machines.
On the one hand, existing distributed graph processing frameworks,
such as GraphX [9] in Spark, are powerful but not specifically op-
timized for the target algorithms like PPR. It’s also challenging
for ML researchers to integrate those graph-processing tasks with
deep learning frameworks. On the other hand, state-of-the-art deep
learning frameworks for graphs, such as PyG [5] and DGL [24], lack
support for widely used graph-processing algorithms and do not
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provide low-level APIs for distributed graph processing. As a result,
designing an efficient and easy-to-use graph engine that incorpo-
rates distributed graph processing into deep learning ecosystems is
in high demand.

Mini-batch Stochastic Gradient Descent (SGD) is widely used
for distributed GNN training. For each mini-batch, existing meth-
ods construct a subgraph for the batch nodes, which may include
a subset of neighboring nodes as the supporting set. Various tra-
ditional graph-processing algorithms, such as BFS [10], Random
Walk [29, 32], and Personalized PageRank [33], are used for mini-
batch subgraph construction. Each graph-processing task starts
with the root node(s) of a batch and usually traverses a large portion
of the entire graph. To handle large-scale graphs, we first partition
the input graph using a min-cut graph partitioning algorithm and
store graph shards in distributed machines. To take advantage of
the asynchronous nature of graph-processing tasks, we use Py-
Torch RPC1, a tensor-based point-to-point communication library
in PyTorch, as our communication protocol. Computation related
to mini-batch subgraph construction is computed locally, with only
necessary information fetched from remote graph storage.

Since data communicated between machines is wrapped in ten-
sors, the key question is if we can achieve relatively good per-
formance by solely depending on existing tensor libraries for dis-
tributed graph processing. If not, what kind of graph-processing
algorithms require the support of additional C++ operators? With
graph structure information represents in tensors, tensor-based op-
erations are widely used in state-of-the-art deep learning libraries
for graphs (e.g., PyG and DGL). The tensor is a dense data structure
with a fixed shape. Naive tensor operators that can be embarrass-
ingly parallelized are well-supported by tensor libraries. Other
commonly used operators like sort, scatter, and gather also have
efficient and easy-to-use APIs. However, current tensor libraries are
inefficient when building algorithms with dynamic frontier node
sets. Such a set has a varying shape and favors a hashmap-like
data structure. Therefore, a C++ implementation is necessary for
algorithms like BFS and Forward Push [1] to avoid the unacceptable
overhead of the Python interpreter when using tensor operations.
The Forward Push algorithm starts at a given source node and
iteratively processes subsets of visited vertices, exploring their out-
neighbors until a termination condition is met. Compared to the
fixed-length unbiased Random Walk, Forward Push uses frontier
node sets with dynamic shapes, and there is much room for im-
provement in a tensor-based implementation. On a moderate-sized
graph dataset (e.g., Ogbn-products), our proposed graph engine can
achieve a 1.7× and 83× speedup compared to the PyTorch tensor-
based implementations of distributed Random Walk and Forward
Push, respectively.

To the best of our knowledge, there is currently no efficient
implementation of Forward Push on a distributed graph that has
plug-and-play compatibility for deep learning applications. In this
work, we present a distributed solution that performs the Forward
Push approximation to compute single-source PPR (SSPPR) queries
efficiently and in a user-friendly way. To further extend our meth-
ods for general use, we devise a distributed graph storage using

1https://pytorch.org/docs/stable/rpc.html

PyTorch RPC to support graph traversal across machines. How-
ever, we encounter a new challenge: how can we provide low-level
APIs while eliminating the inefficiencies? PyTorch RPC is easy to
maintain and integrate, but has poor performance when frequently
transferring small tensors with non-equal lengths. Additionally,
it is challenging to present an efficient approach for computing
PPR values with required neighbor information from local and re-
mote graph storage. To tackle these issues, we make the following
contributions:

• We implement an efficient and easy-to-use graph engine for
deep learning on graphs. Our engine allows for easy integra-
tion of existing single-machine graph primitives, enabling
the simple implementation of distributed graph processing
algorithms.
• We design a distributed min-cut clustering graph storage
for general graph-processing algorithms. We further present
efficient batching techniques to reduce the number of RPC
requests and compress each response, greatly reducing the
remote fetch overhead.
• We develop an efficient method for computing SSPPR by
parallelizing the Forward Push algorithm using the lock-free
parallel map.
• Extensive experimental results show that our map-based
solution is significantly faster than the tensor-based imple-
mentation for distributed SSPPR computing, with up to three
orders of magnitude improvement in throughput.

2 BACKGROUND
PPR has been widely used in GNNs for large-scale graphs due to
its ability to overcome the limitations of traditional graph convo-
lutional layers and to address the problem of over-smoothing and
neighbor explosion [30]. SSPPR is a variant of PPR that computes
PPR scores for a single source node, which is particularly useful for
subgraph sampling and node embedding [26].

Many GNN models incorporate PPR to improve aggregation
quality. GDC [8] applies PPR diffusion directly to the input graph.
PPNP [7] and PPRGo [2] devise an improved propagation scheme
based on PPR. GBP [4] further generalizes PPR to a bidirectional
propagation algorithm for feature propagation. In another line of
research, ShaDow [33] samples the mini-batch subgraphs based on
the top-K PPR values for arbitrary deep GNNs. Above works have
shown promising results in improving the throughput and accuracy
of PPR-based methods, thereby making them more practical for
real-world GNN applications.

2.1 Preliminary
2.1.1 Single Source Personalized PageRank. Personalized PageRank
is an algorithm for ranking nodes based on their significance for a
given set of query nodes in a graph [13]. Given a source node 𝑠 and
a teleport factor 𝛼 , PPR computes the probability that a random
walk with restart from 𝑠 terminates at each node 𝑣 in the graph. This
probability is referred to as the personalized PageRank 𝜋 (𝑠, 𝑣) of 𝑣
with respect to 𝑠 . Single-source Personalized PageRank is a variant
of PPR that finds the top-k nodes with the highest PPR values for a
given source node 𝑠 in a graph 𝐺 . For simplicity, we focus on the
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Algorithm 1: Forward Push Algorithm
Input :Edge-weighted graph 𝐺 (𝑉 , 𝐸,𝑊 ), teleport

probability 𝛼 , maximum residual 𝜀, target node 𝑡 .
Output :An 𝜀-approximate weighted PPR vector 𝜋 (𝜀 ) .

1 Function push(𝑣 , 𝛼 , 𝜋 , 𝑟 ,𝑊 , 𝑑𝑤):
2 𝜋 (𝑣) ← 𝜋 (𝑣) + 𝛼 · 𝑟 (𝑣)
3 𝑚 ← (1 − 𝛼) · 𝑟 (𝑣)
4 𝑟 (𝑣) ← 0
5 for 𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑣) do
6 𝑟 (𝑢) ← 𝑟 (𝑢) + 𝑊 (𝑣,𝑢 )

𝑑𝑤 (𝑣) ·𝑚
7 end for
8 return
9

10 𝜋 (𝜀 ) (𝑣) ← 0 for all vertices 𝑣 ∈ 𝑉
11 𝑟 (𝑡) ← 1, 𝑟 (𝑣) ← 0 for all vertices 𝑣 ∈ 𝑉 − {𝑡}
12 𝑑𝑤 (𝑣) ←

∑
𝑢∈𝑁𝑜𝑢𝑡 (𝑣)𝑊 (𝑣,𝑢) for all vertices 𝑣 ∈ 𝑉

13 while ∃𝑣 s.t 𝑟 (𝑣) > 𝜀 · 𝑑𝑤 (𝑣) do
14 apply push(𝑣, 𝛼, 𝜋, 𝑟,𝑊 ,𝑑𝑤 ) at vertex 𝑣 , updating 𝜋 (𝑣),

𝑟 (𝑣), and 𝑟 (𝑢), where 𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑣)
15 end while
16 return 𝜋 (𝜀 )

distributed computation of approximate SSPPR processing without
top-k selection, referred to as approximate whole-graph SSPPR [25].

2.1.2 Throughput of distributed SSPPR. To be consistent with the
concept of batched SGD in GNN training, we denote the throughput
as the total number of processed PPR queries (source nodes) per
second across all machines. We assume the root nodes of a batch are
evenly distributed across all machines. Each root node is considered
the source node of an SSPPR query. We then collect the overall
runtime of processing a large number of queries (e.g., 128) per
machine in parallel, including synchronization time, and calculate
the throughput.

2.1.3 Forward Push Algorithm. The Forward Push algorithm [1] is
a graph traversal algorithm used for computing personalized PageR-
ank. It propagates scores from the source node to its neighbors using
a priority queue and is commonly used due to its efficiency and scal-
ability [23]. In the following sections, we refer to the set of nodes
whose residual value 𝑟 (𝑣) satisfies the condition 𝑟 (𝑣) > 𝜀 · 𝑑𝑤 (𝑣)
as activated nodes. Algorithmic details regarding the forward push
are shown in Algorithm 1.

2.2 Related Work
2.2.1 PPR Computation Methods. There are three main categories
of methods for computing PPR vectors: matrix-basedmethods, local-
update based methods, and Monte-Carlo based methods. Matrix-
basedmethods, such as power iteration [16] and Lanczosmethod [19],
require computing the entire transition matrix, which can be ex-
pensive for large graphs. Local-update based methods, such as Push
and Pull [20] and Reverse Push [1], update the PPR vectors of neigh-
boring nodes iteratively. However, these methods require many
iterations to converge, especially for nodes that are far from the
source node. Monte-Carlo based methods, such as Random Walk

Figure 1: Overview

with Restart [23] and Heat Kernel[6], estimate PPR vectors by simu-
lating random walks on the graph. However, they suffer from high
variance and require many iterations to achieve accurate results.
For large graphs, these methods can be computationally expensive
and memory-intensive. Forward Push method [3] is a recent ad-
vancement that overcomes these limitations by partitioning the
graph and computing PPR vectors using forward push on each
partition. However, it requires a global synchronization step and
may not scale well for highly skewed graphs.

2.2.2 Parallelizing Personalized PageRank. One of the earliest works
for computing personalized PageRank in a distributed setting is
the graph partitioning approach proposed by Kamvar et al. [15],
which divides the graph into disjoint subgraphs and computes the
PageRank vector of each subgraph independently. Another popular
approach is the parallelization of the power iteration algorithm
using MapReduce, as proposed by Jeh and Widom [14]. Recently,
distributedmethods that use GraphX [28], a graph processing frame-
work built on top of Apache Spark, have gained popularity. These
methods typically store the graph as a distributed graph partition,
where each partition is stored in the memory of a different machine.

3 APPROACH
3.1 Overview
In this work, we propose a distributed graph engine, optimized for
SSPPR queries. To achieve efficient access to remote graph shards,
we construct a distributed Graph Storage using the distributed RPC
module in PyTorch with point-to-point asynchronous communica-
tion. For SSPPR computation, we choose the basic Forward Push [1]
algorithm to approximate the exact SSPPR results. To avoid the
inefficiency of current tensor libraries, we implement C++ Forward
Push operators (denoted as PPR Ops) for storing and updating the
intermediate results.

Figure 1 illustrates the high-level architectural design of the
proposed distributed PPR engine. The use of native tensor commu-
nication libraries greatly enhances the compatibility of our engine
with deep graph learning methods. All intermediate variables are
wrapped in tensors, allowing our low-level Python APIs to work
seamlessly with other tensor operations or graph primitives sup-
ported by deep graph libraries. Regarding the Forward Push process
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Figure 2: The nodes are denoted in (𝑥,𝑦) format, where 𝑥 rep-
resents the local ID and y represents the shard ID. Addition-
ally, the numbers on the edges represent the corresponding
edge weights. Notably, a dotted line is utilized to indicate the
separation between shards. Specifically, the node (0, 1) serves
as a halo node for Shard 0, while the nodes (2, 0) and (1, 0)
function as halo nodes for Shard 1.

in Algorithm 1, the algorithm iteratively fetches the neighborhood
of activated nodes (i.e., nodes with residual values greater than
the threshold) and pushes the values of activated nodes to their
neighbors. Following the owner compute rule, which dispatches
computation to the data owner to reduce network communication,
we assign each SSPPR query to the machine that hosts the cor-
responding graph partition of the source node. During the fetch
step, computing processes access local and remote graph storage
to obtain neighborhood information. In the push step, the visited
nodes are stored and updated locally. By utilizing a min-cut graph
partitioning algorithm, most of the nodes visited by the Forward
Push algorithm are locally available via shared memory, reducing
network traffic significantly.

In our implementation, we create a Remote Reference for each
Graph Storage object and pass these references to every comput-
ing process. The Remote Reference serves as a distributed shared
pointer to a local or remote Object, while the Graph Storage object
provides operations on the local shard data. In the production sce-
nario, each machine processes a batch of SSPPR queries in parallel.
Therefore, a number of computing processes would register in the
RPC group on each machine. Each process on each machine owns
a unique Graph Storage object that points to the same local graph
shard data in shared memory. Additionally, we provide a batch
version for fetch and push operations, which significantly reduces
the overall runtime.

Figure 4 shows Python code snippets for the iteration loop of
distributed graph algorithms based on our proposed graph engine.
Here we leverage two operations of Distributed Graph Storage:
get_neighbor_infos and sample_one_neighbor. Both functions take
the destination shard ID and a list of local vertex IDs as input,
and output graph information related to the source vertex ID list
from the remote/local machine. As discussed in Section 1, Random
Walk can be efficiently performed using only tensor operations.
However, for Personalized PageRank, additional C++ operators

Figure 3: Shards only store the data about core nodes. There-
fore, the third row in the adjacency matrix (with dotted line)
is not included in the storage of Shard 0.

(pop and push) are required for efficient computation. Following
this design, our proposed PPR engine can be easily extended to
other graph processing algorithms, enabling efficient distributed
computing for localized C++ graph operators.

3.2 Distributed Graph Storage
3.2.1 Graph Partitioning. For large-scale graph computations with
billions of nodes and edges, calculating PPR in a distributed setting
requires partitioning the graph into multiple shards. This prevents
exceeding the memory capacity of a single machine, with each
shard assigned to a different machine. Graph partitioning is a pre-
processing step before distributed PPR computing. Once the input
graph is partitioned, it can be used to compute many SSPPR queries,
which amortizes the overhead.

To ensure efficient and effective partitioning, we employ the
widely-used METIS [17] partitioning algorithm. METIS works by
minimizing the number of edges between different partitions while
ensuring a balanced graph partitioning. After partitioning the graph
into several non-overlapping vertex sets, we assign all the 1-hop
neighbors of each vertex set to the corresponding partition. We
refer to the vertex set assigned by METIS to a partition as core nodes,
and the vertex set of 1-hop neighbors that do not intersect with core
nodes as halo nodes. Halo nodes can be viewed as nodes situated at
the periphery of the partition, where each 1-hop halo node has at
least one connection to the core nodes. The higher the hop value
for halo nodes, the lower the communication requirements and
the higher the amount of stored data. Our caching scheme for 1-
hop halo nodes ensures that each partition can fulfill any requests
related to its core nodes, while only adding a moderate amount of
memory overhead.

3.2.2 Graph Shard Data Structure. After partitioning the graph,
we convert each partition to the Compressed Sparse Row (CSR)
format. This storage format is frequently used for large-scale graphs
due to its memory and cache efficiency. We represent rows with
core nodes and columns with the union of core nodes and halo
nodes. For each core node, we store neighbor information including
endpoint index (indptr), local vertex IDs of neighboring nodes, shard
IDs of neighboring nodes, edge weights, and weighted degrees of
neighboring nodes. We refer to this converted data structure as
the Graph Shard. Using this format, we efficiently store the graph
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Single Source Personalized PageRank (w. overlap)
g = DistGraphStorage(rrefs , SHARD_ID)
m = SSPPR(source_node_id , SHARD_ID , ALPHA , EPSILON)

while True:
node_ids , shard_ids = m.pop()
if len(node_ids) == 0: break

mask_dict = {j: shard_ids == j for
j in range(NUM_SHARDS)}

futs = {}
for j, mask in mask_dict.items():

if j == SHARD_ID: continue
futs[j] = g.get_neighbor_infos(j,

node_ids[mask])
mask = mask_dict[SHARD_ID]
infos = g.get_neighbor_infos(SHARD_ID ,

node_ids[mask])
m.push(infos , node_ids[mask], shard_ids[mask])
for j, mask in mask_dict.items():

infos = futs[j].wait()
m.push(infos , node_ids[mask], shard_ids[mask])

RandomWalk
g = DistGraphStorage(rrefs , SHARD_ID)

node_ids = # root nodes local IDs
shard_ids = torch.empty(NUM_ROOTS)
walks_summary = torch.empty(NUM_ROOTS , WALK_LEN)

mask_dict = {SHARD_ID: torch.arange(NUM_ROOTS)}

for i in range(WALK_LEN):
futs = {}
for j, mask in mask_dict.items():

futs[j] = g.sample_one_neighbor(j,
node_ids[mask])

for j, index in mask_dict.items():
local_nids , global_nids , sids = futs[j].wait()
node_ids[mask] = local_nids
shard_ids[mask] = sids
walks_summary[mask , i] = global_nid

for j in range(NUM_SHARDS):
mask_dict[j] = shard_ids == j

Figure 4: The Python implementation of distributed Single Source Personalized PageRank and distributed RandomWalk, using
the abstraction of the proposed graph engine and PyTorch. The variable rrefs denotes a list of PyTorch Remote Reference
objects. The function names in red indicate the interface supported by Distributed Graph Storage, and PPR Ops are highlighted
in blue.

data using contiguous shared memory arrays containing neighbor
information for the core nodes. A Graph Shard consists of the
following arrays:

• indptr (index pointer): This array stores the endpoint indices
for each node’s neighboring data, corresponding to non-zero
values in the adjacency matrix.
• local IDs: This array stores the local ids of the neighboring
nodes for each core node, facilitating efficient access.
• shard IDs: This array stores the shard ids of the neighboring
nodes for each core node, indicating the shard to which the
neighboring nodes belong.
• edge weights: This array stores the edge weights between the
core node and its neighboring nodes, allowing for efficient
retrieval of edge weight information.
• weighted degrees: This array stores the weighted degree
values for the neighboring nodes of each core node, repre-
senting the sum of the edge weights for the outgoing edges
incident to that node.

The Graph Shard data structure offers several benefits. First, a
local ID and a shard ID can be used to represent an arbitrary node
without converting them to a global ID. When traversing a graph,
shard IDs can be used to dispatch tasks to target machines, and
local IDs can be directly used as indices for core nodes. Second,
the weighted degrees are useful for threshold checking in Forward
Push. If the residual value of a node is greater than the threshold
and the node is not already in the activated set, it can be added to
the activated set for the next iteration. Storing weighted degrees
in each shard eliminates the need to aggregate edge weights on
the fly, which can be slow and resource-intensive, especially when
dealing with cross-machine operations.

Overall, the utilization of the CSR format in Graph Shards enables
efficient storage and retrieval of graph data, particularly for large-
scale graphs with sparse connectivity patterns. Figure 2 visualizes
an example of a 2-partitioned graph represented in our Graph Shard
format.

Our graph engine provides a comprehensive set of APIs/prim-
itives for general graph operations, allowing users to efficiently
access and manipulate graph data. The vertex property (VertexProp)
object is a critical logical component of the proposed approach, as it
serves as a container for essential neighbor information pertaining
to the core node within a shard. This information is essential for
efficient graph traversals, as it allows the engine to quickly identify
and access the relevant vertices. Specifically, these objects encom-
pass pointers to local ids, shard ids, edge weights, and weighted
degrees arrays of the corresponding graph shard, along with the
start and end indices that delineate the neighborhood of each node.
The arrangement of these vertex property components in Shard 0 is
shown in Figure 3. Moreover, our engine includes several methods
for retrieving critical statistics about the graph. This API can be
easily extended to incorporate additional functions as needed.

3.2.3 RPC requests Optimization. Another noteworthy contribu-
tion of our research lies in the establishment of efficient communica-
tion mechanisms between shards to enable distributed computation
of PPR values. The vanilla Forward Push algorithm (Algorithm 1)
sequentially processes each activated vertex and updates along its
out-neighbors. If we directly implement this sequential version
based on our distributed Graph Storage, many RPC requests will be
issued across machines, and each data package size will be propor-
tional to the source node’s out-degree. Most real-life graphs follow
the power law, implying that the majority of nodes in the graph

926



SC-W 2023, November 12–17, 2023, Denver, CO, USA Gangda Deng, Ömer Faruk Akgül, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Jianbo Li, and Viktor Prasanna

have a very small set of neighbors. However, the TensorPipe back-
end for PyTorch RPC is designed for transferring large tensors with
relatively low frequency. It can chunk and multiplex large tensors
over multiple sockets to achieve very high bandwidths. Therefore,
issuing a large number of RPC requests with small data packages
is inefficient.

We propose three optimization techniques for tensor-based RPC
communication to address the aforementioned problems. (1) We
batch all the RPC requests according to the destination shard IDs
in each iteration. (2) Before transferring the neighbor information
for a batch of source nodes, we compress it into the CSR format
and wrap each array in a tensor. (3) We overlap local operations
with remote calls.

For better RPC request batching, we adopt the parallel Forward
Push algorithm [22] as our single machine base algorithm. In each
iteration, the parallel version processes the activated vertices and
updates along their out-neighbors, which are processed in parallel.
Although the parallel version requires slightly more "pushes" than
the sequential version, the parallel Forward Push is naturally suit-
able for request batching since there are no dependencies within a
set of activated vertices. As discussed in the previous section, each
node is represented by a local ID and a shard ID. We can use tensor
operations to efficiently construct a local ID mask for each shard.
Then, each process requests a batch of neighbor information from
each Graph Storage based on the filtered local ID array. This ensures
that each process issues at most one request to another machine in
each iteration, thereby minimizing communication overhead.

Given that we store the graph data in a vertex-centric way, the
response is wrapped in a list-of-list format, returning a vector of
neighbor information (wrapped in tensors) for a batch of source
nodes. Note that nodes with extremely large degrees, also known
as super-nodes, can generally impact the vertex-centric representa-
tion. However, in the context of GNNs, super-nodes are not an issue,
since the degree of each node is usually limited during preprocess-
ing. For local requests, the neighbor information is also wrapped in
the same way and then returned to the Python layer without data
copy. However, tensor wrapping dominates the local fetch time, and
transferring a list of small tensors with non-equal lengths through
Torch RPC is inefficient. To optimize this, we directly pass a vector
of shared pointers of VertexProp across the C++ and Python layers
for local fetching, without taking ownership of the original data.
To perform a remote fetch, we first convert the requested neighbor
information to CSR format and then wrap each array in a tensor.
Since the CSR format response has the same structure as the Graph
Shard data, we can easily use the VertexProp API to extract the
response.

We further overlap local operations with remote calls, effectively
leveraging parallelism and reducing overall runtime. Note that we
use pybind11 towrap the C++Graph Storage and PPR operators into
Python objects. Overlapping RPC target functions with local Python
functions can cause a Global Interpreter Lock (GIL) contention issue,
drastically increasing remote fetch time. To address this problem,
we explicitly release the GIL in our C++ functions and separate the
Graph Storage server process from the PPR computing process.

3.3 Local PPR Operators
In the following section, we present the local PPR operators that are
optimized specifically for calculating approximated SSPPR queries,
following the parallel Forward Push algorithm [22] outlined above.
According to the algorithm, when the residual value of a node
exceeds the computed threshold, the PPR value for that node and its
neighboring nodes is updated. Here we discuss two main operators
exposed to the Python layer. (1) The pop operator first returns the
local ID tensor and the shard ID tensor from the current activated
vertex set and then clears the set. (2) The push operator updates the
PPR and residual values based on a given batch of source nodes and
their neighbor information. For each SSPPR query computation,
the main loop is written in Python. In each iteration, the computing
process first retrieves the activated nodes from the pop operator,
then fetches neighbor information from local and remote Graph
Storage, and finally invokes the push operator to update the PPR
and residual values of the vertices touched in this iteration.

To further optimize performance, we leverage the inherent paral-
lelism of an open-source parallel hash map2 in our implementation
of operators. Parallel-hashmap stores key-value pairs in a hash table
that is partitioned into multiple segments/submaps. The key is a
<local:id, shard:id> pair, and the value is either the PPR value or the
residual value. Each segment is protected by a lock to allow for con-
current access in a multi-threaded environment. To ensure thread
safety in a parallel environment, we eliminate the need for locks
by assigning computationally expensive map update operations to
each thread based on the index of the submap. Here, we applied a
simple strategy to determine whether to use multi-threading for
push operation. If the batch size of source nodes surpasses a cer-
tain threshold, we distribute the workload among multiple threads
using the OpenMP parallel directive for improved performance.
Otherwise, only a single thread is used.

4 EXPERIMENTS
In this section, we experimentally evaluate our proposed method
on several large-scale real-world graphs. We begin by comparing
our method with pure tensor-based implementations and present
the scalability analysis. Then, we present the overall runtime break-
down and examine each design’s effectiveness. Finally, we demon-
strate a straightforward example of integrating our proposed PPR
engine with distributed GNN training.

4.1 Experimental Settings
Setup. We implement our graph engine using Python 3.9.13 and
PyTorch 1.13.1. The Graph Storage and PPR Ops are implemented
in C++14 and bonded to Python using Pybind11 [12]. We simulate
the distributed setting using a machine with dual AMD EPYC 7763
CPU (128 cores 256 threads with Simultaneous Multi-Threading
turned on) and 1TB ECC-DDR4 memory. On distributed clusters
with fast interconnections (i.e., 100Gbps Ethernet or InfiniBand),
we expect the time cost of remote communication to be similar to
local communication through shared memory, and memory opera-
tions to be faster due to more independent memory channels. Note
that we spawn 𝐾 × (𝑃 + 1) processes to simulate a 𝐾-machines
scenario, where 𝑃 is the number of SSPPR computing processes.
2https://github.com/greg7mdp/parallel-hashmap
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Table 1: Datasets

Name |𝑉 | |𝐸 | 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥

Ogbn-products 2.5M 120M 50.5 17,481
Twitter 41.7M 2.4B 57.7 2,997,487

Friendster 65.6M 3.6B 57.8 5,214
Ogbn-papers100M 111M 3.2B 29.1 251,471

Each simulated machine is also assigned an additional process as
the Graph Storage server. Processes within a simulated machine
can directly access the local graph shard from the shared memory,
while accesses across simulated machines are routed through RPC
requests.

Following the definition of approximated whole-graph SSPPR
from existing works [18, 25], where an SSPPR query of source node
𝑠 returns an estimated PPR 𝜋 (𝑠, 𝑣) for each node 𝑣 ∈ 𝑉 with a value
greater than zero, we collect the throughput (number of computed
SSPPR queries) and runtime in an average of 10 repeated runs after
4 warm-up runs. We fix the value of the teleport parameter to
𝛼 = 0.462 and residue threshold to 𝜀 = 10−6 for all experiments.

Datasets and query sets. To better evaluate our proposed
method, we run experiments on 4 public large-scale datasets: Ogbn-
products, Twitter, Friendster, and Ogbn-papers100M. Among them,
Ogbn-products andOgbn-papers100M are from theOGB [11] datasets,
which are widely used in graph machine learning research. We re-
move node features in the original OGB datasets and only keep
the graph topology. Twitter and Friendster are social networks ob-
tained from SNAP collection3 and are intensively used to evaluate
PPR query efficiency. All these datasets are converted to undirected
graphs with randomly generated edge weights. Table 1 summarizes
the statistics of the datasets.

Graph Shard Preprocessing. To achieve efficient distributed
PPR computing, we partition the entire graph of each dataset into
several graph shards and further preprocess each shard according
to Section 3. Let vertex IDs and edge weights have data types with
the same size (i.e., int32 and float32), the memory consumption of
each preprocessed graph shard will increase by around 1.5 times.
This is due to the additional storage of |𝐸 | elements of the weighted
degrees for each node 𝑣 where (𝑢, 𝑣) ∈ 𝐸. For example, the Ogbn-
papers100M dataset with edge weights has a size of around 28GB.
After partitioning the graph into 4 parts using Metis and prepro-
cessing each part, the largest graph shard has a size of around
14GB.

4.2 Comparison with tensor-based
Implementation

In this section, we aim to examine the overall performance of our
proposed PPR Engine against tensor-based PPR methods.

Different from existing graph-processing libraries, tensor-based
methods use tensors as the foundational data structure to imple-
ment complex graph algorithms, which offer the best flexibility
and utility for integration with deep learning methods. For each
whole-graph SSPPR query, we create a 1-D tensor 𝑥 with the length

3http://snap.stanford.edu/data/index.html

Table 2: Throughput (number of queries per second) of imple-
mentations under the 4-machine scenario. For Forward Push
based implementations, the teleport probability 𝛼 = 0.462
and the residue threshold 𝜀 = 10−6.

Data Struct. Tensor HashMap
Algo. Power Iteration Forward Push

Impl. Name DGL SpMM PyTorch Tensor PPR Engine
Ogbn-products 1.676 11.92 981.7

Twitter 0.364 2.617 905.2
Friendster 0.236 1.202 1304.1

Ogbn-papers 0.148 0.879 726.1

of |𝑉 | to store the PPR query regarding the source node. The in-
dex of 𝑥 corresponds to the vertex global ID, and each element
stores the PPR value of the node corresponding to the index. Fol-
lowing this setup, we can efficiently update a subset of PPR values
in parallel by just using the tensor operations. Here we include two
tensor-based implementations as our baseline models. The first is a
single-machine implementation of the Power Iteration algorithm,
which relies on the Sparse Matrix-Matrix multiplication library
in DGL[24]. We refer to this implementation as DGL SpMM. The
second implementation, denoted as PyTorch Tensor, is a distributed
version of the parallel Forward Push algorithm [22], built using
only PyTorch operators. We refer to our proposed method as PPR
Engine.

Table 2 shows the throughput for different implementations on
each of the datasets. We simulate a 4-machine scenario and set
the number of compute processes on each machine to 3. For the
single-machine version of Power Iteration (PyG SpMM), we simply
times the throughput of a single machine by a factor of 4 to obtain
the results of the ideal case.

Unlike Forward Push, Power Iteration is a High-Precision SSPPR
method [27] that aims to compute an estimation 𝜋 (𝑠, 𝑣) of 𝜋 (𝑠, 𝑣)
such that |𝜋 (𝑠, 𝑣) − 𝜋 (𝑠, 𝑣) | ≤ 𝜖 . Typically, 𝜖 is set to a very small
value (e.g., 10−10 in our experiment), and the results obtained using
Power Iteration are considered as ground truth. When comparing
two tensor-based methods, we observed that the Forward Push
implementation is up to 7.2× faster than the ideally distributed
Power Iteration, while achieving 97%+ accuracy of the top-100 re-
sults with the residual threshold 𝜀 = 10−6. This is because Forward
Push can terminate most of the propagation steps, significantly
reducing the number of push operations. For downstream GNN
tasks, approximated SSPPR methods show comparable accuracy
to exact methods [2], even with a residual threshold 𝜀 = 10−4, but
with significantly less overhead.

For Forward Push implementations, our PPR engine is 83−1085×
faster than the tensor-based solution. The main difference between
these two solutions is that the PPR engine uses C++ level Graph
Storage and HashMap-based PPR operators. The main drawback of
the tensor-based solution is that the overhead of SSPPR calculation
increases in proportion to the total number of nodes. In contrast,
the HashMap-based method’s running time is more related to the
local pattern of source nodes, rather than the input graph size.
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Figure 5: Scalability analysis: varying the numbers of machines and processes.

4.3 Scalability Analysis
This section aims to examine the scalability of our proposed PPR
engine by varying the number of machines and computing pro-
cesses.

Figure 5 shows the throughput of processed SSPPR queries per
second on each dataset. We fixed the problem size at 256 for SSPPR
queries and set the number of graph partitions to be equivalent to
the number of used machines. For each machine, we spawn only
one process for SSPPR computing. When increasing the number
of machines from 2 to 8, we observe a speedup of 2.5 − 3.5×. Note
that increasing the number of machines also increases the number
of partitions and reduces the size of each shard. In general, as the
number of machines increases, a larger portion of graph traversal
will take place outside of the local graph shard (e.g., from 3% to
13% for 2 to 8 partitions on Ogbn-products). This demonstrates
the efficiency of our Remote Graph Storage for large-scale graph
computation in the distributed setting. Additionally, an appropriate
number of graph partitions can effectively reduce the number of
edge cuts and thereby reduce communication overhead, which is
crucial to the overall throughput. For instance, when increasing the
number of machines from 2 to 4 on the Twitter dataset, the ratio of
remote graph traversal decreased from 55% to 50%, resulting in a
super-linear speedup of 2.6×.

Next, we examine the scalability of our method’s inter-SSPPR
parallelism. We fix the number of machines to 2 and vary the num-
ber of computing processes per machine from 1 to 8. We evaluate

Table 3: The ablation study of RPC optimizations on Friend-
ster.

Local
Fetch (s)

Remote
Fetch (s) Push (s) Total (s) Speedup

Single 0.38 6.59 0.87 7.85 —
+Batch 0.16 0.80 0.15 1.11 7.1×

+Compress 0.03 0.13 0.15 0.30 26.2×
+Overlap 0.04 0.22 0.15 0.22 35.7×

two types of scalability: (1) For strong scaling, we fix the total
problem size (number of queries) to 128 and alter the number of
processes. (2) For weak scaling, we fix the number of assigned
queries to 128 for each process, which aligns with the GNN sam-
pling setting. As shown in Figure 5, we use 8 processes to achieve
a 4.8 − 5.5× speedup compared to a single process for the strong
scaling setup, and a 6.4 − 7.8× speedup for the weak scaling setup.
We see that our implementation scales well (almost linearly for
weak scaling) with the number of processes. The relatively worse
performance of the strong scaling setup can be attributed to the
problem of workload imbalance, which becomes more severe when
the number of queries per process is small.

4.4 Effects of optimizations
In this section, we evaluate the effectiveness of each proposed
optimization technique.

Figure 6 shows the breakdown of running time for the PPR En-
gine and PyTorch Tensor, respectively. Both methods batch the RPC
requests and avoid overlapping local operations with remote calls
for a better breakdown of runtime. To facilitate comparison, we
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Figure 6: The runtime breakdown for PyTorch Tensor and
PPR Engine on different datasets.
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Distributed GNN Tranining with Personalized PageRank
g = DistGraphStorage(rrefs , rank)

model = GraphSAGE(NUM_INPUT , NUM_OUTPUT).to(rank)
model = DistributedDataParallel(model ,

device_ids =[rank])
optimizr = torch.optim.Adam(model.parameters ())
loader = DataLoader(torch.arange(NUM_NODES[rank]),

batch_size=BATCH_SIZE // WORLD_SIZE)

for epoch in range(NUM_EPOCHES):
model.train()
for batch_index in loader:

ppr = forward_push(g, batch_index)
batch = convert_batch(g, ppr , batch_index)
batch = batch.to(rank)
optimizer.zero_grad ()
out = model(batch.x, batch.edge_index)
loss = F.cross_entropy(out[batch.ego_idx],

batch.y)
loss.backward ()
optimizer.step()

torch.distributed.barrier ()

Figure 7: The variable rrefs represents a list of PyTorch Re-
mote References of Graph Storages. Functions for PPR com-
putation are highlighted in red.

omit the time taken for activated node retrieval in both figures. For
PyTorch Tensor, retrieving activated nodes requires scanning the
entire PPR tensor, making the time cost dominant and proportional
to |𝑉 |. On the other hand, for PPR Engine, retrieving activated nodes
refers to the pop operation, and the time cost is negligible since
the activated nodes equal the keys of a pre-stored node set. We see
that the Remote Fetch time is similar to the Push time for our PPR
Engine, and the Remote Fetch time is dominant for PyTorch Tensor.
This indicates that the remote RPC requests are well optimized in
our PPR Engine. Additionally, our proposed HashMap-based push
operation is 5 − 16× faster than the tensor-based push.

We further study the efficacy of the RPC request optimization
techniques discussed in Section 3.2.3. For the baseline model, we do
not apply any RPC optimization techniques and process only one
vertex at a time. We denote the baseline model as Single. The RPC
batching technique is employed on the baseline version, which is
referred to as Batch. We then compress the neighbor information
transferred in the Batch version and denote it as Compress. Finally,
we overlap remote fetching with local operations based on Com-
press and name this version as Overlap. To ensure fairness, we use
C++ Graph Storage and PPR Ops for all the competitors. As shown
in Table 3, each proposed technique is able to effectively reduce
the overall runtime. We observe that batching RPC requests can
effectively speed up all operations. This is because batch parallelism
is well utilized and the overhead of issuing RPC requests is signifi-
cantly reduced. The neighbor information compression technique
can further reduce local and remote fetching time by around 80%.
Lastly, we can achieve an additional 1.3x speedup by overlapping
remote fetching with local fetching and push operation.

4.5 Case Study: Training GNNs with
Personalized PageRank

To illustrate the ease of integration for the proposed Graph Engine
with distributed GNN training, we provide a simple yet intact ex-
ample in this section. Figure 7 shows the code snippet that uses
PPR to construct subgraphs for distributed mini-batch training of
ShaDow-SAGE [33]. For simplicity, we use one GPU device per
machine and store a different Graph Shard in the memory of each
machine. We use PyTorch’s DistributedDataParallel for distributed
gradient synchronization and PyG for GNN model implementation.
For each batch, we calculate a list of top-K SSPPR vectors on-the-fly
using our proposed PPR engine. We then convert these vectors to
PyG’s data format and feed them to the GNN models located on
GPUs. Note that a convert_batch function is all we need to integrate
our PPR engine with existing GNN libraries by following ShaDow’s
design principle [33]. This function induces a subgraph from a set
of vertices with top-K PPR values and slices corresponding fea-
tures from a cross-machine feature store. These data can then be
easily transformed into different formats suitable for various deep
learning frameworks for graphs.

5 CONCLUSION
We presented a distributed graph engine for efficient SSPPR com-
putation. Our proposed graph engine incorporates generalized
graph storage, an optimized Forward Push algorithm for comput-
ing SSPPR, and efficient batching techniques to minimize PyTorch
RPC communication overhead. We have shown through extensive
experiments that our map-based solution achieves significant im-
provements in SSPPR computation speed, with up to three orders of
magnitude throughput improvement over traditional tensor-based
approaches. Our results demonstrate that our approach can scale
well on large graphs and achieve high performance in distributed
GNN training. We believe that our approach has broad applications
in real-world graph mining tasks and will be a valuable resource
for GNN researchers and practitioners.
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