
Journal of Parallel and Distributed Computing 147 (2021) 166–183

t
d
c
b
r
t
e
i
2
r

b

a
p

h
0

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Accurate, efficient and scalable training of Graph Neural Networks
Hanqing Zeng a,∗,1, Hongkuan Zhou a,1, Ajitesh Srivastava a, Rajgopal Kannan b,
Viktor Prasanna a

a University of Southern California, Los Angeles, CA, United States of America
b US Army Research Lab, Los Angeles, CA, United States of America

a r t i c l e i n f o

Article history:
Received 18 March 2020
Received in revised form 1 August 2020
Accepted 25 August 2020
Available online 16 September 2020

Keywords:
Graph representation learning
Graph Neural Networks
Graph sampling
Graph partitioning
Memory optimization

a b s t r a c t

Graph Neural Networks (GNNs) are powerful deep learning models to generate node embeddings
on graphs. When applying deep GNNs on large graphs, it is still challenging to perform training in
an efficient and scalable way. We propose a novel parallel training framework. Through sampling
small subgraphs as minibatches, we reduce training workload by orders of magnitude compared
with state-of-the-art minibatch methods. We then parallelize the key computation steps on tightly-
coupled shared memory systems. For graph sampling, we exploit parallelism within and across sampler
instances, and propose an efficient data structure supporting concurrent accesses from samplers. The
parallel sampler theoretically achieves near-linear speedup with respect to number of processing units.
For feature propagation within subgraphs, we improve cache utilization and reduce DRAM traffic by
data partitioning. Our partitioning is a 2-approximation strategy for minimizing the communication
cost compared to the optimal. We further develop a runtime scheduler to reorder the training
operations and adjust the minibatch subgraphs to improve parallel performance. Finally, we generalize
the above parallelization strategies to support multiple types of GNN models and graph samplers. The
proposed training outperforms the state-of-the-art in scalability, efficiency and accuracy simultane-
ously. On a 40-core Xeon platform, we achieve 60× speedup (with AVX) in the sampling step and 20×
speedup in the feature propagation step, compared to the serial implementation. Our algorithm enables
fast training of deeper GNNs, as demonstrated by orders of magnitude speedup compared to the
Tensorflow implementation. We open-source our code at https://github.com/GraphSAINT/GraphSAINT

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Graph embedding is a powerful dimensionality reduction
echnique to facilitate downstream graph analytics. The embed-
ing process converts graph nodes with unstructured neighbor
onnections into points in a low-dimensional vector space. Em-
edding is essential for a wide range of tasks such as content
ecommendation [27], traffic forecasting [28], image recogni-
ion [5] and protein function prediction [7]. Among the various
mbedding techniques, Graph Neural Networks (GNNs) (includ-
ng Graph Convolutional Network (GCN) [12] and its variants [4,7,
3,30]) have attained much attention. GNNs produce accurate and
obust embedding without the need of manual feature selection.

On large graphs, GNN training proceeds in the unit of mini-
atches. Due to edge connections, the graph nodes are not I.I.D
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distributed, and thus cannot be sampled uniformly at random as
minibatch data points. State-of-the-art methods construct mini-
batches by sampling on each GNN layer (i.e., layer sampling).
The vanilla GCN [12] and its successor GraphSAGE [7] sample
by tracking down the inter-layer connections. Their approaches
preserve the training accuracy of the original model, but the
parallel training is not work-efficient due to a phenomenon often
referred to as ‘‘neighbor explosion’’ [4,6,7]. Namely, for every
additional GNN layer traversed by their samplers, the number of
sampled nodes (i.e., neighbors) grows by an order of magnitude.
Consequently, the sampled nodes across different minibatches
overlap significantly, especially at the first few GNN layers. The
amount of redundant computation thus increases exponentially
with the number of GNN layers. To alleviate such high re-
dundancy, FastGCN [4] proposes to independently sample the
nodes of each GNN layer, without explicitly considering the layer
connection constraint. Although FastGCN is faster than [7,12], it
incurs significant accuracy loss and requires preprocessing on the
full graph which is expensive and not easily parallelizable.

Due to the layer sampling design philosophy, it is difficult for
state-of-the-art methods [4,7,12] to simultaneously achieve accu-
racy, efficiency and scalability. In this work, we perform sampling
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on the graph rather than the GNN layers. Our novelty lies in
proposing a graph sampling-based minibatch training algorithm
via joint optimization on the learning quality and parallelization
cost. We achieve scalability by (1) Developing a novel data struc-
ture that enables efficient subgraph sampling through supporting
fast parallel updates on the sampling probability; (2) Optimiz-
ing parallel execution of intra-subgraph feature propagation and
layer-wise weight updates — specifically a cache-efficient sub-
graph partitioning scheme that guarantees near-minimal DRAM
traffic. Optimization in the above two steps can be generalized to
support multiple kinds of GNN models and sampling algorithms.
We achieve work-efficiency by avoiding ‘‘neighbor explosion’’, as
each layer of our minibatched GNN contains the same number
of neurons corresponding to the subgraph nodes. Finally, we
achieve learning accuracy since our sampled subgraphs preserve
connectivity characteristics of the original training graph. The
main contributions of this paper are:

• We propose a parallel GNN training algorithm based on
graph sampling:

– Accuracy is achieved since the sampler returns small,
representative subgraphs of the original graph.

– Efficiency is optimized since we always build complete
GNNs on the minibatch subgraphs to avoid ‘‘neighbor
explosion" in deeper layers.

– Scalability is achieved with respect to number of pro-
cessing cores, graph size and GNN depth by paralleliz-
ing various key steps.

• We propose a novel data structure that supports fast, in-
cremental and parallel updates to a probability distribution.
Our parallel sampler based on this data structure theoret-
ically and empirically achieves near-linear scalability with
respect to number of processing units.
• We parallelize all the key operations to scale the overall

minibatch training to a large number of processing cores.
Specifically, for subgraph feature propagation, we perform
intelligent partitioning along the feature dimension to
achieve close-to-optimal DRAM and cache performance.
• We propose a runtime scheduling algorithm for training:

– By rearranging the order of various operations, we
significantly reduce the training time under a wide
range of model configurations.

– By partition scheduling and node clipping of subgraphs,
we improve the feature propagation performance by
better cacheline alignment.

• We show that our parallelization and scheduling techniques
are applicable to a number of GNN architectures (including
graph convolution and graph attention) and graph sampling
algorithms (including random edge sampling and variants of
random walk sampling).
• We perform thorough evaluation on a 40-core Xeon server.

Compared with serial implementation, we achieve 15×
overall training time speedup. Compared with state-of-the-
art minibatch methods, our training achieves up to 7.8×
speedup without accuracy loss.
• Our parallel training greatly facilitates development of

deeper GNN models on larger graphs. We achieve two or-
ders of magnitude speedup for 3-layer GNNs compared to
state-of-the-art Tensorflow implementation.

2. Background and related work

Graph Neural Networks (GNNs), including Graph Convolu-
tional Network (GCN) [12], GraphSAGE [7] and Graph Attention
167
Network (GAT) [23], are the state-of-the-art deep learning models
for graph embedding. They have been widely shown to learn
highly accurate and robust representations of the graph nodes.
Like CNNs, GNNs belong to a type of multi-layer neural network,
which performs node embedding as follows. The input to a GNN
is a graph whose each node is associated with a feature vector
(i.e., node attribute). The GNN propagates the features of each
node layer by layer, where each layer performs tensor operations
based on the model weights and the input graph topology. The
last GNN layer outputs embedding vectors for each node of the
input graph. Essentially, both the input node attributes and the
topological information of the graph are ‘‘embedded" into the
output vectors.

2.1. Forward and backward propagation

In this paper, we mainly consider four types of widely used
GNNs: Graph Convolutional Network (GCN) [12], GraphSAGE [7],
MixHop [1] and Graph Attention Network (GAT) [23]. We first
introduce in detail the GraphSAGE model architecture, and then
summarize the layer operations of the other three.

Let the input graph be G (V, E,X), where X ∈ R|V|×f stores
he initial node attributes, and f is the initial feature length. A
raphSAGE layer aggregates signals of nodes V along the edges
. A full GraphSAGE network is build by stacking multiple layers,
here the inputs to the next layer are the outputs of the previous
ne. We use superscript ‘‘(ℓ)" to denote GNN layer-ℓ parameters.
or a layer ℓ, it contains |V| nodes corresponding to the graph
odes. Each input and output node of the layer is associated with
feature vector of length f (ℓ−1) and f (ℓ), respectively. Denote

X (ℓ−1)
∈ R|V|×f (

ℓ−1)
and X (ℓ)

∈ R|V|×f (
ℓ)

as the input and output
feature matrices of the layer, where X (0)

= X and f (0) = f . A
layer input node v(ℓ−1) is connected to a layer output node u(ℓ)

if and only if (v, u) ∈ E . If we view the input and output nodes
as a bipartite graph, then the bi-adjacency matrix A(ℓ) equals the
adjacency matrix A of G.

Each GraphSAGE layer contains two learnable weight ma-
trices: self-weight W ◦ the neighbor-weight W ⋆. The forward
propagation of a layer is defined by:

X (ℓ)
= ReLU

(
Ã · X (ℓ−1)

·W (ℓ)
⋆

X (ℓ−1)
·W (ℓ)

◦

)
(1)

where ‘‘∥’’ is the column-wise matrix concatenation operation,
and Ã is the normalized adjacency matrix. The normalization can
be calculated as Ã = D−1 · A, where A is the binary adjacency
matrix of G and D is the diagonal degree matrix of A (i.e., Dii =

deg (i)).
From Eq. (1), each layer performs two key operations:

1. Feature aggregation: Each layer-ℓ node collects features of
its layer-(ℓ− 1) neighbors and then calculates the
weighted sum, as shown by Ã · X (ℓ−1).

2. Weight transformation: The aggregated neighbor features
are multiplied by W (ℓ)

⋆ . The features of a layer-(ℓ− 1) node
itself are multiplied by W (ℓ)

◦
.

After obtaining the node embedding from the outputs of the
last GNN layer, we can further perform various downstream tasks
by analyzing the embedding vectors. For example, we can use a
simple Multi-Layer Perceptron (MLP) to classify the graph nodes
into C classes. Let L be the total number of GNN layers. So X (L)

is the final node embedding. Following the design of [4,7,9], the
classifier MLP generates the node prediction by:

XMLP =ReLU
(
X (L)
·WMLP

)
Y =σ (XMLP) (2)
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where WMLP ∈ Rf (L)×C . Function σ (·) is the element-wise sig-
moid or row-wise softmax to generate the probability of a node
belonging to a class.

Under the supervised learning setting, each node of V is also
provided with the ground-truth class label(s). Let Y ∈ R|V|×C be
he binary matrix encoding the ground-truth labels. Comparing
he prediction with the ground-truth, we can obtain a scalar loss
alue, L, by cross-entropy (CE):

= CE
(
Y ,Y

)
(3)

For the other three types of GNNs under consideration, we
need to update Eq. (1) for different forward propagation rules.
Specifically, for GCN [12], the main difference from GraphSAGE
is that there is not an explicit term X (ℓ−1)

· W (ℓ)
◦

to capture
the influence of a node to itself. Instead, the self-influence is
propagated by adding a self-connection in the graph. Therefore,
the adjacency matrix becomes I + A and the normalization is
performed differently. The forward propagation of each layer is
as follows:

X (ℓ)
= ReLU

(
Â · X (ℓ−1)

·W (ℓ)
)

(4)

where Â is a symmetrically normalized adjacency matrix calcu-
lated by Â = (I + D)−

1
2 · (I + A) · (I + D)−

1
2 , and I is the identity

atrix.
For MixHop [1], each layer is able to propagate influence from

odes up to K -hops away (i.e., u is said to be K -hops away from
if the shortest path from u to v has length K ). The forward
ropagation of each layer is defined as:

(ℓ)
= ReLU

(K

k=0
Â
k
· X (ℓ−1)

·W (ℓ−1)
k

)
(5)

here ‘‘∥’’ is again the operation for matrix concatenation. Â
k

eans the symmetrically normalized adjacency matrix raised to
he power of k. And ‘‘order’’ K is a hyperparameter of the model.

For GAT [23], instead of aggregating the features from the
revious layer (i.e., X (ℓ−1)) using a fixed adjacency matrix (i.e., Â
n GCN or Ã in GraphSAGE), each GAT layer learns the weight of
the adjacency matrix as the ‘‘attention’’. The forward propagation
of a GAT layer is specified as:

X (ℓ)
= ReLU

(
A(ℓ−1)
att · X

(ℓ−1)
·W (ℓ)

)
(6)

where each element in the attention adjacency matrix A(ℓ−1)
att is

calculated as:[
A(ℓ−1)
att

]
u,v
= LeakyReLU

(
aT
·

(
W (ℓ)
· x(ℓ−1)u

W (ℓ)
· x(ℓ−1)v

))
(7)

where a is a learnable vector and xu means the feature vector
of node u (i.e., the u-th row of the feature matrix X (ℓ−1)). As
an extension, Eq. (6) can be modified to support ‘‘multi-head’’
attention. Note that the computation pattern of ‘‘multi-head’’ GAT
is the same as that of ‘‘single-head’’ captured by Eq. (6) and
our parallelization strategy can be easily extended to support
the multi-head version. We therefore restrict to Eq. (6) for the
discussion on GAT.

In summary, considering all the four models, the full forward
propagation during training takes X as the input and generates L
as the output by traversing the GNN layers, the classifier layers,
and the loss layer. After obtaining L, we perform backward prop-
agation from the loss layer all the way to the first GNN layer and
update the weights by gradients. The gradients are computed by
chain-rule. In Section 5, we analyze the computation in backward
propagation and propose parallelization techniques for each of

the key operations.
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Fig. 1. Illustration on layer sampling and graph sampling based GCN design.

2.2. Minibatch training methods

For large scale graphs, training of the GNN has to proceed
in minibatches, so that each iteration of weight update involves
only a small number of graph nodes. GraphSAGE [7], FastGCN [4],
AS-GCN [9] and VR-GCN [6] incorporate various layer sampling
techniques to construct minibatches. Upper part of Fig. 1 abstracts
the meta-steps of 1. Constructing a full GNN on the training graph
G, 2. Sampling nodes from the |V| nodes of each layer, and 3.
Forward and backward propagation among the sampled nodes.
For the sampling of step 2, various techniques have been pro-
posed to improve learning quality or training speed. For [6,7,9],
they first randomly select a small number of nodes from the
outputs of the last GNN layer as the ‘‘minibatch’’ nodes. Then they
treat such minibatch nodes as the roots and back-tracks the layer
connections to sample connected nodes in the previous layers.
When such back-tracking goes from layer L’s outputs down to
layer 1’s inputs, the number of multi-hop neighbors of the roots
can be orders of magnitude larger than the number of roots. This
is referred to as ‘‘neighbor explosion’’ [4,6,7] (see also analysis
in Section 3.2). Note that if u is a k-hop neighbor of v, then u is
connected to v via a length-k path in G. Equivalently, node u in
layer ℓ of the GNN can influence v in layer ℓ+k. While [6,9] have
proposed techniques to alleviate such ‘‘neighbor explosion’’ of [7],
none of them is scalability from the computation complexity
perspective. Specifically, the variance reduction based sampler
of [6] comes at the cost of much higher memory usage, and the
sampler of [9] using an auxiliary neural network incurs significant
computation overhead. On the other hand, for [4], the sampling
is performed independently at each layer. [4] first computes the
sampling probability for each node of V , based on the sparse
adjacency matrix A. Then it selects a fixed number of nodes from
each layer according to such probability. Finally, the sampled
GNN to generate the embedding for the minibatch is built by
connecting the sampled nodes in adjacent layers. Clearly, [4]
avoids ‘‘neighbor explosion’’ since the number of samples in each
layer is fixed. Unfortunately, such training can result in significant
accuracy degradation. Since the sampling in each layer is inde-
pendent, significant portion of the node samples in layer i may
be disconnected to node samples in layer i+ 1 when G is large.
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In our prior work [31], we proposed a minibatch training
ethod for the GraphSAGE model based on graph sampling, and
eveloped parallelization strategies targeting at shared-memory
ulti-core processors. We designed a table based data struc-

ure to support parallel graph sampling, and a data partitioning
cheme supporting parallel feature propagation within
ubgraphs. In this work, we improve the parallel graph sampling
lgorithm by a more compact design of the data structure. Thus,
e significantly reduce the computation cost and storage over-
ead of graph sampling. We also propose a scheduling algorithm
or the overall training. The scheduler intelligently re-orders
he operations in GNN layer propagation to reduce computation
omplexity, and updates the sampled subgraphs to improve the
ache performance. Lastly, we show that our parallelization and
cheduling strategies are general, and can be extended to various
NN models including but not limited to GraphSAGE.
Our other work, GraphSAINT [30], extends the idea of train-

ng GNNs with graph sampling. GraphSAINT focuses on further
mproving training accuracy by bias elimination and variance
eduction techniques, while this work mostly focuses on the
arallelization strategies to achieve superior scalability on multi-
ore platforms. Note that the training algorithm enhancements
roposed by GraphSAINT can be easily incorporated into our
arallel execution framework without losing any efficiency or
calability.

. Graph sampling-based minibatch training

We present a novel graph sampling-based GNN training
ethod. Our parallel minibatch training simultaneously outper-

orms the state-of-the-art in accuracy, efficiency and scalability.
e present the design of the training (Section 3.1), and analyze

he advantages in efficiency (Section 3.2) and accuracy (Sec-
ion 3.3). We then present optimizations to scale training on
arallel machines (Sections 4 and 5).

.1. Design of the minibatch training algorithm

As shown in the lower part of Fig. 1, the graph sampling-
ased approach does not construct a GNN directly on the original
nput graph G. Instead, for each iteration of weight update during
raining, we first sample a small induced subgraph Gs (Vs, Es) from
(V, E). We then construct a complete2 GNN on Gs. The forward
nd backward propagation are both on this small GNN. Algorithm
describes our approach. The key distinction from traditional

raining methods is that the computations (lines 5–13) are per-
ormed on nodes of the sampled graph instead of the sampled
ayer nodes, thus requiring much less computation in training due
o reduced redundancy (Section 3.2). In addition, since the GNN
n the subgraph Gs is complete, the forward propagation rule is
lmost the same as that of the GNN on the full graph. We can
irectly use Eqs. (1), (4), (5), (6), (2) and (3) by just replacing the
ull feature matrix X (ℓ) and the full adjacency matrix A with the
nes for the subgraph, X (ℓ)

s and As. In Section 3.3, we discuss
he requirements for the SAMPLE function (line 3), and present
hree representative graph samplers that leads to high accuracy
f training.
Note that for all the methods discussed in this paper (both the

ayer sampling based and our proposed graph sampling based),
‘‘minibatch’’ is always defined as node samples in the output

2 Not to be confused with ‘‘complete graph’’. Here a GNN being complete
eans that the bi-adjacency matrix defining the GNN inter-layer connection
as the same non-zeros as the adjacency matrix of the graph Gs . i.e., we do not
erform any sampling on the nodes in each GNN layer or the edges connecting
onsecutive layers.
 i
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GNN layer. For example, consider a GNN with one hidden layer.
If a particular method selects 1000, 100 and 10 nodes in the
input, hidden and output layers respectively, then we say the
minibatch size is 10, the 1-hop neighborhood size is 100 and the
2-hop neighborhood size is 1000. In this case, the GNN only gen-
erates label predictions for the 10 minibatch nodes. The number
of hops is with respect to minibatch nodes.

Algorithm 1 Graph sampling based minibatch training algorithm

Input: Training graph G(V, E,X); Ground-truth labels Y ; L-layer
GNN model

Output: GNN with trained weights
1: ▷ Iterate over minibatches
2: while not converged do
3: Gs (Vs, Es)← SAMPLE (G (V, E))

4: Ãs ← adjacency matrix of Gs
5: X s ← feature matrix by looking up X with Vs
6: Y s ← ground-truth labels by looking up Y with Vs
7: Construct complete GNN on Gs
8: ▷ Forward propagation (e.g. GraphSAGE model)
9: for ℓ = 1 to L do

10: X (ℓ)
s ← ReLU

(
Ã · X (ℓ−1)

s ·W (ℓ)
⋆

X (ℓ−1)
s ·W (ℓ)

◦

)
11: end for
12: Ys ← σ

(
ReLU

(
X (L)

s ·WMLP
))

13: Ls ← CE
(
Ys,Y s

)
14: ▷ Backward propagation
15: Update WMLP, W (ℓ)

◦
, W (ℓ)

⋆ by gradients w.r.t. Ls
16: end while
17: return Trained GNN model

3.2. Complexity of graph sampling-based minibatch training

We analyze the computation complexity of our graph-
sampling based training and show that it significantly reduces
redundancy in computation. In the following analysis, we do not
consider the sampling overhead, and we only focus on the for-
ward propagation, since backward propagation has identical com-
putation characteristics as forward propagation. Later, we also
experimentally demonstrate that our technique is significantly
faster even with the sampling step included (see Section 7).

Using the GraphSAGE design as a representative GNN model
Eq. (1), the main operations to propagate forward by one GNN
layer include:

• Feature aggregation: Each node feature vector from layer-ℓ
propagates via layer connections. The aggregation requires
O

(
|Es| · f (ℓ)

)
operations.

• Weight transformation: Each node multiplies its feature with
the weight, leading to the overall complexity of
O

(
|Vs| · f (ℓ−1) · f (ℓ)

)
.

For simplicity, assume f (ℓ) = f . Further let ds be the aver-
ge degree of the subgraph Gs. Complexity of L-layer forward
ropagation in one minibatch is:

(L · |Vs| · f · (f + ds)) (8)

By convention, one epoch of training is defined as one time
raversal of all the training data points by predicting their la-
els. Thus, by the definition of ‘‘minibatch’’ in Section 3.1, we
efine an epoch in our training as |V| /|Vs| number of minibatches
i.e., subgraphs). Clearly, the computation complexity of an epoch

| |
s O (L · V · f · (f + ds)).
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Comparison against other GNN training methods. As discussed in
ection 2.2, for [6,7], each sampled node in layer ℓ further selects
′ number of neighbors in layer ℓ− 1. For [7], d′ ranges from 10
o 50, and for [6], d′ = 2. So depending on the minibatch size (see
ection 3.1), the complexity of one epoch falls between:
Case 1 [Small minibatch size]: O

((
d′

)L
· |V| · f · (f + d′)

)
.

Case 2 [Large minibatch size] O
(
L · |V| · f · (f + d′)

)
.

We observe that when the minibatch size is much smaller
han the training graph size, the layer sampling techniques result
n high training complexity (computation load grows exponen-
ially with GNN depth). Essentially, due to ‘‘neighbor explosion’’,
hen the layer-L nodes are traversed only once, the nodes in
he previous layer ℓ are sampled and evaluated

(
d′

)L−ℓ times on
verage. The repeated evaluation of the layer nodes across dif-
erent minibatches makes training inefficient due to computation
edundancy. On the other hand, when the minibatch size of [6,7]
ecomes comparable to the training graph size, the training com-
lexity grows linearly with the GNN depth and training graph
ize. However, the resolution of ‘‘neighbor explosion’’ comes at
he cost of slow convergence and low accuracy [11], since overly
arge minibatch size hurts generalization of neural networks. So
uch training configuration of Case 2 does not scale to large
raphs.
If we ignore the convergence rate dependent on the input

raph, our graph-sampling based training leads to a parallel al-
orithm whose complexity is linear in GNN depth and training
raph size. The work-efficiency of our training is guaranteed by
esign: throughout the entire training, for each node v, the num-
er of times its label is predicted in the output layer is equal to
he number of times its feature is computed in any hidden layer.
n this sense, there is no redundant computation arising from
epeated evaluation of hidden layer nodes as discussed above.
n addition, by choosing proper graph sampling algorithms, we
an construct small representative subgraphs whose sizes do not
row proportionally with the training graph size (as shown in
ection 7).

.3. Accuracy of graph sampling-based training

Layer-based sampling methods assume that a subset of neigh-
ors of a given node is sufficient to learn its representation.
e achieve the same goal by sampling the graph itself. If the

ampling algorithm constructs enough number of representative
ubgraphs Gs, our training process should absorb all the informa-
ion in G, and generate accurate embeddings. More specifically,
s discussed in Section 2, the output vectors ‘‘embed" the input
raph topology as well as the initial node attributes. A good graph
ampler, thus, should guarantee:

1. Sampled subgraphs preserve the connectivity characteris-
tics of the training graph.

2. Each training graph node has non-negligible probability to
be sampled.

It has been widely studied [8] that various random walk
ased graph sampling algorithms (including unbiased random
alk [30], forest fire [15,16], multiple random walk and frontier
ampling [19]) can preserve the various input graph character-
stics well. In addition, all these sampling algorithms are able
o explore the full set of nodes and edges in the original graph
ue to the stochasticity in sampling. Thus, such algorithms are all
alid candidates for our subgraph sampling based training. From
he perspective of computation, unbiased random walk, forest
ire and multiple random walk algorithms fall within the ‘‘static ’’
ategory of the random walk family according to [25]. In other

ords, throughout the sampling process, these three sampling
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lgorithms follow a fixed probability distribution on node or
dges, regardless of the historically traversed subgraph structure.
owever, the frontier sampling algorithm maintains a dynamic
robability distribution updated by the ‘‘frontier nodes’’ at the
urrent timestamp. Therefore, for frontier sampling, computation
omplexity as well as difficulty in parallelization are both higher
ompared with the other three static algorithms. In the following,
e use frontier sampling as a representative and analyze in detail

ts performance in terms of accuracy and parallel execution. We
hen discuss how the proposed techniques can be extended to the
ther three samplers in Section 4.4.
Before going into the specific steps in sampling, we first give

ome intuition on why training with frontier sampling may lead
o high accuracy. Recall the two requirements above characteriz-
ng a good sampler. For requirement 1, while ‘‘connectivity’’ may
ave several definitions, subgraphs output by [19] approximate
he original graph with respect to multiple connectivity measures,
ncluding degree distribution, assortative mixing coefficient and
lustering coefficients. These graph measures critically define
ow signals on the graph nodes would propagate and mix via
NN layers, and thus should be carefully maintained by the
ubgraph samples. For requirement 2, during initialization, the
rontier sampler picks some root nodes uniformly at random
rom the original graph (see Section 4.1). These roots constitute a
ignificant portion of the subgraph nodes. Thus, over large enough
umber of sampling iterations, all input attributes of the training
raph will be covered by the frontier sampler. For readers inter-
sted in theoretical justification on the choice of those sampling
lgorithms, please check the analysis in [30].

. Parallel graph sampling algorithm

In this section , we first describe our parallelization strategies
or the frontier sampling algorithm [19]. Then in Section 4.4, we
how how to extend our strategies to other graph samplers.

.1. Graph sampling algorithm

The frontier sampling algorithm proceeds as follows. Through-
ut the sampling process, the sampler maintains a constant-size
rontier set FS consisting of m vertices in G. In each iteration,
he sampler randomly pops out a node v in FS according to a
degree based probability distribution, and replaces v in FS with a
randomly selected neighbor of v. The popped out v is added to the
node set Vs of Gs. The sampler repeats the above update process
n the frontier set FS, until the size of Vs reaches the desired

budget n. Algorithm 2 shows the details. According to [19], a good
mpirical value of m is around 1000.

Algorithm 2 Frontier sampling algorithm

Input: Training graph G(V, E); Frontier size m; Node budget n
Output: Induced subgraph Gs (Vs, Es)
1: FS← Set of m nodes selected uniformly at random from V
2: Vs ← FS
3: for i = 0 to n−m− 1 do
4: Select u ∈ FS with probability deg (u) /

∑
v∈FS deg (v)

5: Select u′ from { w | (u, w) ∈ E } uniformly at random
6: FS← (FS \ { u }) ∪

{
u′

}
7: Vs ← Vs ∪ { u }
8: end for
9: Gs ← Subgraph of G induced by Vs

10: return Gs (Vs, Es)

In our sequential implementation of training, we notice that
about half of the time is spent in the sampling phase. This
motivates us to parallelize the graph sampler. The challenges
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are: 1. While sampling from a discrete distribution is a well-
researched problem, we focus on fast parallel sampling from a
dynamic probability distribution. Such dynamism is due to the
addition/deletion of new nodes in the frontier. Existing methods
for fast sampling such as aliasing [24] (which can output a sample
in O(1) time with linear processing) cannot be modified easily for
our problem. It is non-trivial to select a node from the evolving
FS with low complexity. A straightforward implementation by
partitioning the total probability of 1 into m intervals would
require O (m) work to update the intervals for each replacement
in FS. Given m = 1000 as recommended by the authors in the
original paper [19], the O (m · n) complexity to sample a single
Gs is too expensive. 2. The sampling is inherently sequential as
the nodes in the frontier set should be popped out one at a time.
Otherwise, Gs may not preserve the characteristics of the original
graph well enough.

To address the above challenges, we first propose a novel data
structure that lowers the complexity of frontier sampler and al-
lows thread-safe parallelization (Section 4.2). We then propose a
training scheduler that exploits parallelization within and across
sampler instances (Sections 4.3 and 6).

4.2. Dashboard based implementation

Since nodes in the frontier set are replaced only one at a time,
an efficient implementation should allow incremental update of
the probability distribution over the m nodes. To achieve such
oal, we propose a ‘‘Dashboard" table to store the status of
urrent and historical frontier nodes (a node becomes historical
fter it gets popped out of the frontier set). The next node to
op out is selected by probing the Dashboard using randomly
enerated indices. In the following, we formally describe the data
tructure and operations in the Dashboard-based sampler. The
mplementation involves two arrays:

• Dashboard DB ∈ Rη·m·d: A vector maintaining the status and
sampling probabilities of the current and historical frontier
nodes. If a node v is in the frontier, we ‘‘pin’’ a ‘‘tile’’ of v to
the ‘‘dashboard’’. Here a tile is a small data structure storing
the meta-data of v, and a pin is an address pointer to the
tile. One entry of DB corresponds to one pin. A node v will
have deg (v) pins allocated continuously in DB, each pointing
to the same tile belonging to v. If v is popped out of the
frontier, we invalidate all its pins to NULL. The optimal value
of the parameter η is explained later.
• Index array IA ∈ R2×(η·m·d+1): An auxiliary array to help

cleanup DB upon table overflow. The j-th column in IA has 2
slots, the first slot records the starting index of the DB pins
corresponding to v, where v is the jth node added into DB.
The second slot is a flag, which is True when v is a current
frontier node, and False when v is a historical one.

The symbols related to the design and analysis of the Dash-
board data structure are summarized in Table 1.

Since the probability of popping out a node in frontier is pro-
portional to its degree, we allocate deg (vi) continuous entries in
DB, for each vi currently in the frontier set. This way, the sampler
only needs to probe DB uniformly at random to achieve line 4 of
Algorithm 2. Clearly, DB should contain at leastm·d entries, where

is the average degree of the frontier nodes. For the sake of
ncremental updates, we append the entries for the new node and
nvalidate the entries of the popped out node, instead of changing
he values in-place and shifting the tailing entries. The invalidated
ntries become historical. To accommodate the append operation,
e introduce an enlargement factor η (where η > 1), and set

the length of DB to be η · m · d. As an approximation, we set d
s the average degree of the training graph G. As the sampling
171
able 1
ummary of symbols related to the Dashboard based frontier sampling.
Name Meaning

Dashboard (DB) Data structure consisting of ‘‘pins’’ and ‘‘tiles’’ to support
fast dynamic update of probability distribution

tile Data structure storing meta-information of frontier nodes

pin Pointer pointing to the tiles. All pins belonging to
the same node will point to a shared tile

Index array (IA) Data structure helping the cleanup of DB when it is full

m Number of nodes in the frontier set
n Total number of nodes to be sampled in the subgraph
d Average degree of frontier nodes

η
Enlargement factor controlling the computation-storage
tradeoff. Larger η: larger DB and less frequent cleanup

proceeds, eventually, all of the η ·m ·d entries in DB may be filled
up by the information of current and historical frontier nodes.
In this case, we free up the space occupied by historical nodes
before resuming the sampler. Although cleanup of the Dashboard
is expensive, due to the factor η, such scenario does not happen
frequently (see complexity analysis in Section 4.3). Using the
information in IA, the cleanup phase does not need to traverse all
of the η ·m · d entries in DB to locate the space to be freed. When
DB is full, the entries in DB can correspond to at most η · m · d
ertices. Thus, we safely set the capacity of IA to be η ·m · d + 1.
lot 1 of the last entry of IA contains the current number of used
B entries.

.3. Intra- and inter-subgraph parallelization

Since our subgraph-based GNN training requires indepen-
ently sampling multiple subgraphs, we can sample different
ubgraphs on different processors in parallel. Also, we can fur-
her parallelize within each sampling instance by exploiting the
arallelism in probing, book-keeping and cleanup of DB.

Algorithm 3 shows the details of Dashboard-based parallel
rontier sampling, where all arrays are zero-based. Considering
he main loop (lines 20 to 30), we analyze the complexity of the
hree functions in Algorithm 4. Denote COSTrand and COSTmem as
he cost to generate one random number and to perform one
emory access, respectively.

ardo_POP_FRONTIER. Anytime during sampling, on average, the
atio of valid DB entries (those occupied by current frontier
ertices) over total number of DB entries is 1/η. Probability of
ne probing falling on a valid entry equals 1/η. Expected number
f rounds for p processors to generate at least 1 valid probing
an be shown to be 1/

(
1−

(
1− 1

η

)p)
, where one round refers

to one repetition of lines 5 to 7 of Algorithm 4. After selection
of vpop, deg

(
vpop

)
number of slots needs to be updated to in-

valid values INV. Since this operation occurs (n − m) times, the
para_POP_FRONTIER function incurs
(n−m)

(
1

1−(1−1/η)p · COSTrand +
d
p · COSTmem

)
cost.

pardo_CLEANUP. Each time cleanup of DB happens, we need one
traversal of IA to calculate the cumulative sum of indices (slot 1)
masked by the status (slot 2), to obtain the new location for each
valid entries in DB. On expectation, only η·m entries of IA is filled,
so this step costs η·m. Afterwards, only the valid entries in DB will
be moved to the new, empty DB based on the accumulated shift
amount. This translates to m · d number of memory operations.
The para_CLEANUP function is fully parallelized. The cleanup hap-
pens only when DB is full, i.e., n−m

(η−1)m times throughout sampling.
Thus, the cost is n−m

(η−1)·m ·
m·d
p · COSTmem. We ignore the cost of

computing the cumulative sum as ηm≪ md.
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Algorithm 3 Parallel Dashboard based frontier sampling

Input: Original graph G(V, E); Frontier size m; Budget n;
Enlargement factor η; Number of processors p

utput: Induced subgraph Gs (Vs, Es)
1: d← |E|/|V|
2: DB← Array of R1×(η·m·d) with value NULL
3: IA← Array of R2×(η·m·d+1) with value INV ▷ INValid
4: FS← Set of m nodes selected uniformly at random from V
5: Vs ← FS
6: Convert the set FS to an indexable list of nodes
7: IA [0, 0]← 0; IA [1, 0]←True;
8: for i = 1 to m do ▷ Initialize IA from FS
9: IA [0, i]← IA [0, i− 1]+ deg (FS [i− 1])
0: IA [1, i]← True
1: end for
2: IA [1,m]← False
3: for i = 0 to m− 1 pardo ▷ Initialize DB from FS
4: pin← Address of 4-tuple tile (FS[i], IA[0, i], IA[0, i+ 1], i)
5: for k = IA [0, i] to IA [0, i+ 1]− 1 do
6: DB[k] ← pin
7: end for
8: end for
9: cnt← m; Vs ← ∅;

0: for i = m to n− 1 do ▷ Main loop of sampling
1: vpop, pin← pardo_POP_FRONTIER (DB, p)
2: vnew ← Node randomly sampled from vpop’s neighbors
3: if deg (vnew) > η ·m · d− IA [0, s]+ 1 then
4: DB← pardo_CLEANUP (DB, IA, p)
5: cnt← m− 1
6: end if
7: pardo_ADD_TO_FRONTIER (vnew, pin, cnt,DB, IA, p)
8: Vs ← Vs ∪ { vnew }

9: cnt← cnt+ 1
0: end for
1: Gs ← Subgraph of G induced by Vs
2: return Gs (Vs, Es)

pardo_ADD_TO_FRONTIER. Adding a new frontier vnew to DB re-
uires appending deg (vnew) new entries to DB. This costs (n−m)·

d
p · COSTmem.

Considering all operations in pardo_POP_FRONTIER, pardo_
CLEANUP and pardo_ADD_TO_FRONTIER, the overall cost to sam-
ple one subgraph on p processors equals:(

1
1− (1− 1/η)p

· COSTrand +
(
2+

1
η − 1

)
d
p
· COSTmem

)
· (n−m)

(9)

Assuming COSTmem = COSTrand, we have the following scala-
ility bound:

heorem 1. For any given ϵ > 0, Algorithm 2 guarantees a speedup
f at least p

1+ϵ
,∀p ≤ ϵd

(
2+ 1

η−1

)
− η.

roof. Note that 1
1−(1−1/η)p ≤

1
1−exp(−p/η)

≤
η+p
p . This follows

rom 1
1−e−x =

1
1− 1

ex
≤

1
1− 1

1+x
≤

x+1
x . Further, since p ≤ ϵd ·

2+ 1/(η − 1)) − η, we have η+p
p ≤

ϵd·(2+1/(η−1))
p . Now, speedup

btained by Algorithm 2 compared to a serial implementation
p = 1) is

(η + d(1/(η − 1)+ 2)) (n−m)(
1

+
d (1/(η − 1)+ 2)

)
(n−m)
1−(1−1/η)p p

172
Algorithm 4 Functions in Dashboard Based Sampler

1: function pardo_POP_FRONTIER(DB, p)
2: idxpop ←INV ▷ Shared variable
3: for j = 0 to p− 1 pardo
4: while idxpop == INV do ▷ Probing DB
5: idxp ← Index generated uniformly at random
6: if DB

[
idxp

]
̸= NULL then

7: idxpop ← idxp
8: end if
9: end while

10: end for
11: pinpop ← DB

[
idxpop

]
12: vpop, ipinStart, ipinEnd, iIA ← tile data pointed to by pinpop
13: for j = 0 to p− 1 pardo
14: Set DB entries to NULL from index ipinStart to ipinEnd
15: end for
16: IA [1, iIA]← False ▷ Update IA
17: return vpop, pinpop
18: end function
19: function pardo_CLEANUP(DB, IA,p)
20: DBnew ← New, empty dashboard
21: k← Cumulative sum of IA [0, :] masked by IA [1, :]
22: for i = 0 to p− 1 pardo
23: Move entries from DB to DBnew by offsets in k
24: end for
25: for i = 0 to p− 1 pardo
26: Re-index IA based on DBnew
27: end for
28: return DBnew
29: end function
30: function pardo_ADD_TO_FRONTIER(vnew, pin, i,DB, IA, p)
31: IA [0, i+ 1]← IA [0, i]+ deg (vnew) ; IA [1, i]← True;
32: Assign values (vnew, IA[0, i], IA[0, i+ 1], i) to the tuple

pointed to by pin
33: for j = 0 to p− 1 pardo
34: Set DB entries to pin from index IA[0, i] to IA[0, i+ 1]
35: end for
36: end function

≥
d(1/(η − 1)+ 2)

ϵd
p (1/(η − 1)+ 2)+ d

p (1/(η − 1)+ 2)
≥

p
1+ ϵ

. □

Setting ϵ = 0.5, then for any value of η, Theorem 1 guarantees
good scalability (p/1.5) for at least p = d − η processors. As
we will see later in this section, we perform the intra-sampler
parallelism via AVX instructions. So we do not require p to scale
to a large number in practice. Note that the above performance
analysis always holds as long as we know the expected node
degree in the subgraphs. During the sampling process, when the
sampler enters a well connected local region of the original graph,
cleanup may happen more frequently since the frontier contains
more high degree nodes. However, the sampler would eventually
replace those high degree frontier nodes with low degree ones,
so that the overall subgraph degree is similar to that of the
original graph. Also, note that for graphs with skewed degree
distribution, it is possible that the next node to be added into
the frontier set has very high degree. Such a node may even
require more slots than that is totally available in DB. In this
case, we would cleanup DB and allocate all the remaining slots
to that node, without further expanding the size of DB. This only
slightly alters the sampling distribution since the higher the node
degree is, the sooner it would be popped out of the frontier. In
the experiments, we also observe that such a corner case does
not affect the training accuracy (see Section 7.2).
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While the scalability can be high for dense graphs, it is chal-
enging to scale the sampler to massive number of processors on
parse graphs. Feasible parallelism is bound by the graph degree.
n summary, the parallel Dashboard based frontier sampling algo-
ithm 1. enables lower serial complexity by incremental update
n probability distribution, and 2. scales well up to p = O(d)

number of processors. Compared with our original Dashboard
based sampling in [31], the data structure presented in this sec-
tion is more compact. In the original design, the meta-data of
a frontier node v (i.e., the 4-tuple in line 14 of Algorithm 3)
is repeatedly stored deg (v) times in DB. In the current design,
he meta data is only stored once by introducing the ‘‘pin-tile’’
echanism. Thus, the DB size is reduced from 4·η ·m·d to η ·m·d.
uch ‘‘pin-tile’’ design significantly reduces both the memory
torage and the memory movement cost simultaneously.
To further scale the graph sampling step, we exploit task

arallelism across multiple sampler instances. Since the topol-
gy of the training graph G is fixed over the training iterations,
ampling and GNN computation can proceed in an interleaved
ashion, without any dependency constraints. Detailed scheduling
lgorithm of the sampling phase and the GNN computation phase
s described in Section 6. The general idea is that, during training,
e maintain a pool of sampled subgraphs { Gi }. When { Gi } is

empty, the scheduler launches pinter frontier samplers in parallel,
and fill the pool with subgraphs independently sampled from the
full graph G. Each of the pinter sampler instances runs on pintra
number of processing units. Thus, the scheduler exploits both
intra- and inter-subgraph parallelism. In each training iteration,
we remove a subgraph Gs from { Gi }, and build a complete GNN
upon Gs. Forward and backward propagation stay the same as
lines 9 to 15 in Algorithm 1.

When filling the pool of subgraphs, total amount of paral-
lelism pintra · pinter is fixed on the target platform. We should
choose the value of pintra and pinter carefully chosen based on
the trade-off between the two levels of parallelism. Note that
the operations on DB mostly involve a chunk of memory with
continuous addresses. This indicates that intra-subgraph paral-
lelism can be well exploited at the instruction level using vector
instructions (e.g., AVX). In addition, since most of the memory
traffic going into DB is in a random manner, it is desirable to
have DB stored in cache. As coarse estimation, with m = 1000,
η = 2, d = 25, the memory consumption by one DB is 400KB.3
This indicates that DB mostly fits into the private L2 cache (size
256KB) in modern shared memory parallel machines. Therefore,
during sampling, we bind one sampler to one processor core,
and use AVX instructions to parallelize within a single sampler.
For example, on a 40-core machine with AVX2, pintra = 8 and
inter = 40.
Finally, note that the size of DB is determined by the number

f frontier nodes, m, rather than the number of subgraph nodes
. While it is true that we may need to increase n when the
riginal training graph G grows, the size of m would not need

to change. The authors of [19] interpret m as the dimensionality
of the random walk — frontier sampling on G is equivalent to a
single random walk on G raised to the mth Cartesian power. With
such understanding, the authors of [19] use a fixed number of
m = 1000 on all experiments in ranging from small graphs to
large ones.

4.4. Extension to other graph sampling algorithms

By Section 3.3, it is reasonable to use other graph sampling
algorithms to perform minibatch GNN training. Here we evaluate

3 Assume 8-byte address pointing to the tuple of pins. So the size of DB is
· 1000 · 25 · 8 Bytes and the size for the pins is 1000 · 4 · 4 Bytes.
173
two sampling algorithms: random edge sampling (‘‘Edge’’) and
unbiased random walk sampling (‘‘RW’’). The two algorithms are
recommended in [30]. The ‘‘Edge’’ sampler assigns the probability
of picking an edge (u, v) as pu,v ∝ 1

deg(u) +
1

deg(v)
, and can be

nderstood as a special case of the ‘‘RW’’ algorithm by setting the
alk length to be 1. Algorithm 5 specifies the steps of the two
lgorithms. Under the categorization in Section 3.3, ‘‘Edge’’ and
‘RW’’ samplers are static since the sampling probability does not
hange during the sampling process. Therefore, their computation
omplexity is much lower than that of frontier sampling. It is easy
o show that both have computation complexity of O(|Vs| + |Es|)
we can use alias method [24] for ‘‘Edge’’ sampling to achieve
uch complexity).

Algorithm 5 Other graph sampling algorithms (‘‘Edge’’ and ‘‘RW’’)
Input: Training graph G (V, E); Sampling parameters: edge

budget b; number of roots r; random walk length h
Output: Induced subgraph Gs (Vs, Es)
1: function Edge(G, m) ▷ Random edge sampler
2: P ((u, v)) :=

(
1

deg(u) +
1

deg(v)

)
/
∑

(u′,v′)∈E

(
1

deg(u′)
+

1
deg(v′)

)
3: Es ← m edges randomly sampled from E according to

distribution P
4: Vs ← Set of nodes that are end-points of edges in Es
5: Gs ← Node induced subgraph of G from Vs
6: end function
7: function RW(G, r , h) ▷ Unbiased random walk sampler
8: Vroot ← r root nodes sampled uniformly at random from V
9: Vs ← Vroot
0: for v ∈ Vroot do
1: u← v

2: for d = 1 to h do
3: u ← Node sampled uniformly at random from u’s

neighbor
4: Vs ← Vs ∪ { u }

15: end for
16: end for
17: Gs ← Node induced subgraph of G from Vs
18: end function

For the ‘‘Edge’’ and ‘‘RW’’ samplers, we thus only apply inter-
sampler parallelism to achieve scalability. We can use exactly the
same inter-sampler parallelization strategy discussed above. The
only difference is that each subgraph in the pool { Gi } is now
obtained by a serial ‘‘Edge’’ or ‘‘RW’’ sampler.

To further improve the training accuracy with ‘‘Edge’’ and
‘‘RW’’ samplers, we further integrate the aggregator normaliza-
tion and loss normalization techniques [30] into our implemen-
tation. Such normalization requires two minor modifications to
our training algorithm:

• Pre-processing: Before training, we would need to indepen-
dently sample a given number of subgraphs to estimate the
probability of each v ∈ V and e ∈ E being picked by the
sampling algorithm. The pre-processing can be parallelized
by the strategies discussed above.
• Applying the normalization coefficients: with aggregator

normalization, the feature aggregation (i.e., Ãs · X s) would
be based on a re-normalized adjacency matrix. With loss
normalization, the loss Ls would be computed with weighted
sum for the minibatch nodes. Therefore, the two normal-
ization steps do not make any change on the computation
pattern.
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5. Parallel training algorithm

We next present parallelization techniques for the forward
nd backward propagation. Specifically, the subgraph based train-
ng enables a simple partitioning scheme that ensures near-
ptimal feature propagation performance.

.1. Computation kernels in training

After obtaining the subgraphs as minibatches, the GNN com-
utation mainly involves forward and backward propagation
long the layers. We first analyze in detail the backward propa-
ation computation for the GraphSAGE model [7]. Then we show
hat all the four GNN variants presented in Section 2 share the
ame set of key computation operations. And thus the paralleliza-
ion strategy can be generally applied to all the models. As for
he forward propagation, Eqs. (1)–(3) have already defined all the
perations required for the various layers. Next, we derive the
quations for calculating gradients.
Starting from the minibatch loss Ls, we first compute the

radient with respect to the classifier output on the subgraph
odes (XMLP)s. Then, using chain-rule, we compute the gradients
ith respect to the variables of the MLP layer and the graph
onvolution layers (from layer L back to layer 1).
For the layer with cross-entropy loss, the gradients are com-

uted by:

(XMLP)sLs =
1
|Vs|
·
(
Y s − Y s

)
(10)

For the MLP layer, the gradients are computed by:

∇WMLPLs =
(
X (L)

s

)T
· mask

(
∇(XMLP)sLs

)
∇X (L)

s
Ls =mask

(
∇(XMLP)sLs · (WMLP)

T
)

(11)

For each graph convolution layer ℓ, the gradients are com-
puted by:

∇W (ℓ)
◦

Ls =
(
X (ℓ−1)

s

)T
· mask

([
∇X (ℓ)

s
Ls

]
:,0: 12 f

(ℓ)

)
∇W (ℓ)

⋆
Ls =

(
ÃsX (ℓ−1)

s

)T
· mask

([
∇X (ℓ)

s
Ls

]
:, 12 f

(ℓ):f (ℓ)

)
X (ℓ−1)
s

Ls =mask

([
∇X (ℓ)

s
Ls

]
:,0: 12 f

(ℓ)

)
·
(
W (ℓ)
◦

)T
+

(
Ãs

)T
· mask

([
∇X (ℓ)

s
Ls

]
:, 12 f

(ℓ):f (ℓ)

)
·
(
W (ℓ)

⋆

)T
(12)

From the equations of forward and backward propagation,
e observe that the GraphSAGE computation consists of three
ernels:

• Feature/gradient propagation in the sparse subgraph – e.g.,
ÃsX (ℓ)

s ;
• Dense weight transformation on the feature/gradient – e.g.,

X (ℓ−1)
s W (ℓ)

◦
;

• Sparse adjacency matrix transpose – i.e.,
(
Ãs

)T
.

In fact, the above three are also the key operations for GCN
12], MixHop [1] and GAT [23]. For GCN [12], the forward propa-
ation only contains one pass as compared to the two paths in
raphSAGE (i.e., the two paths being concatenated by the ‘‘∥’’
peration). Therefore, in the backward propagation, we replace
˜ s with Âs and only keep the terms containing Âs in Eq. (12). For
xample, we have ∇X (ℓ−1)

s
Ls =

(
Â
)T
· mask

(
∇X (ℓ)

s
Ls

)
·
(
W (ℓ))T.

For MixHop [1], each layer in the forward propagation con-
ists of K paths as compared to the two paths in GraphSAGE.
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Therefore, we need to introduce the
(
Â
)k

terms (where 1 ≤
k ≤ K ) to Eq. (12) in the backward pass. For example, we need

Âs

)2
X (ℓ−1)

s to compute ∇W (ℓ)
2
Ls. Further note that

(
Âs

)2
X (ℓ−1)

s

= Âs ·

(
ÂsX (ℓ−1)

s

)
. And even though As is sparse, the product

ÂsX (ℓ−1)
s is again a dense matrix. So the forward and backward

propagation for MixHop does not involve sparse–sparse matrix
multiplication and the MixHop computation can still be covered
by the three key operations listed above.

For GAT [23], in the forward pass, we need to compute the
attention values for each element in the subgraph adjacency
matrix. Such computation according to Eq. (7) only involves dense
algebra. After obtaining the attention adjacency matrix, the rest
of the propagation by Eq. (6) is the same as that of GCN. In the
backward pass, according to chain rule, we can still break down
the computation steps following the logic in the forward pass.
For example, to obtain the gradient with respect to attention
parameters a, we first obtain the gradients with respect to the
attention matrix A(ℓ−1)

att by a series of dense matrix operations on
X (ℓ−1), ∇X (ℓ)Ls and W . Then we obtain the gradient with respect
to a based on the gradient with respect to A(ℓ−1)

att . Even though
the mathematical expression for the GAT gradient computation is
more complicated, it is easy to see that all the operations involved
are again covered by the three key operations listed above.

In summary, if we can efficiently parallelize the three op-
erations listed above, we are automatically able to execute the
full forward and backward propagation for the four GNNs. We
present our method for transposing the sparse adjacency matrix
in Section 5.2 and the techniques for parallel feature propagation
in Section 5.3. Now consider the dense matrix multiplication
involved in the weight transformation step. Since this operation
is a standard BLAS level 2 routine, it can be efficiently parallelized
using standard libraries such as Intel R⃝ MKL [10].

In the following, we use Ãs to represent the subgraph adja-
cency matrix used in each GNN layer. For different models, the
Ãs may be replaced by Âs or Aatt.

.2. Transpose of the sparse adjacency matrix

Since we assume the training graph and the sampled sub-
raphs are undirected, the transpose of the subgraph adjacency
atrix

(
Ãs

)T
can be performed efficiently with low computation

and space complexity. We first discuss the serial implementation
before moving forward to the parallel version.

Suppose the original adjacency matrix Ã is represented in
the CSR format, consisting of a size-|Vs + 1| index pointer array
(Indptr), a size-|Es| indices array (Indices) and a size-|Es| data
array (Data). For an undirected graph, if edge (u, v) ∈ Es, then
v, u) ∈ Es. Therefore, the index pointer and the indices arrays of
˜ s are identical as the ones of

(
Ãs

)T
. To transpose Ãs thus means

to generate a new data array by permuting the original Data of
the CSR of Ãs.

We propose to generate the permuted data array for
(
Ãs

)T
by

a single pass of Indptr and Indices of Ãs. Our algorithm relies
on a weak assumption on Indices of Ãs: for any node v, we
assume its neighbor IDs in the indices array, Indices [Indptr[v] :
Indptr[v + 1]], is sorted in ascending order. The transpose oper-
tion is shown in Algorithm 6. The correctness of the algorithm
an be reasoned as follows. Suppose a column v of the original
djacency matrix has n non-zeros denoted as

[
Ãs

]
ui,v
= ai, where

1 ≤ i ≤ n and the node IDs satisfy ui < uj for i < j. When
e traverse the CSR of Ã (lines 4 to 5), we will read a before
s i
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Algorithm 6 Transpose of the subgraph adjacency matrix

Input: Original adjacency matrix Ãs in the CSR format

Output: Transposed adjacency matrix
(
Ãs

)T
in the CSR format

1: Indptr, Indices,Data← CSR arrays of Ãs
2: DataTrans← array of size |Es| initialized to INV
3: PtrData← array of size |Vs| initialized to Indptr[: |Vs|]

4: for v from 0 to |Vs| − 1 do
5: for j from Indptr[v] to Indptr[v + 1] do
6: u← Indices[j]; a← Data[j];
7: DataTrans[PtrData[u]] ← a
8: Increment PtrData[u] by 1 ▷ Next position to append
9: end for
0: end for
1: return

(
Ãs

)T
from Indptr, Indices, DataTrans

aj if the node IDs have ui < uj. After transpose, the neighbor
ata – a1, . . . , an – should be placed in a continuous subarray

Data [Indptr[v] : Indptr[v + 1]] of
(
Ãs

)T
. In addition, ai should

locate to the left of aj if ui < uj. Therefore, once reading ai of the
edge (ui, v) from Ãs, we can simply append ai to v’s data subarray
of the transposed CSR.

The computation and space complexity of Algorithm 6 are
O (|Vs| + |Es|) and O (|Es|) respectively, which are low compared
with other operations in training. We parallelize the adjacency
matrix transpose at the subgraph level. During sampling, each
of the pinter processors sample one subgraph and permute the
corresponding Data array by Algorithm 6. The information of
the original and transposed subgraphs are all stored in the pool
of { Gi } (Section 4.3), to be later consumed by the GNN layer
propagation.

5.3. Parallel feature propagation within subgraph

During training, each node in the graph convolution layer ℓ

pulls features from its neighbors, along the layer edges. Essen-
tially, the operation of ÃX (ℓ−1)

s can be viewed as feature propaga-
tion within the subgraph Gs.

A similar problem, label propagation within graphs, has been
extensively studied in the literature. State-of-the-art methods
based on vertex-centric [2], edge-centric [20] and partition-
centric [13] paradigms perform node partitioning on graphs so
that processors can work independently in parallel. The work
in [32] also performs label partitioning along with graph par-
titioning when the label size is large. In our case, we borrow
the above ideas to allow two dimensional partitioning along the
graph as well as the feature dimensions. However, we also realize
that the above techniques may lead to sub-optimal performance
in our GNN based feature propagation, due to two reasons:

• The propagated data from each node is a long feature vector
(consisting of hundreds of elements) rather than a small
scalar label.
• Our graph sizes are small after graph sampling, so partition-

ing of the graph may not lead to significant advantage.

In the following, we analyze the computation and communi-
cation costs of feature propagation after graph and feature parti-
tioning. We temporarily ignore load-imbalance and partitioning
overhead, and address them later on.

Suppose we partition the subgraph into Qv number of disjoint
node partitions

{
V i
|0 ≤ i ≤ Q − 1

}
. Let the set of nodes that
s v i

175
send features to V i
s be V i

src =
{
u|(u, v) ∈ Es ∧ v ∈ V i

s

}
. Note

that V i
s ⊆ V i

src, since we follow the design in [7] to add a self-
connection to each node. We further partition the feature vector
xv ∈ Rf of each node v into Qf equal parts

{
xiv|0 ≤ i ≤ Qf − 1

}
.

Each of the processors is responsible for propagation of X i,j
s ={

xjv|v ∈ V i
src

}
, flowing from V i

src into V i (where 0 ≤ i ≤ Qv − 1
nd 0 ≤ j ≤ Qf − 1).

Define γv =

⏐⏐⏐V i
src

⏐⏐⏐
|V| as a metric reflecting the graph partitioning

quality. While γv depends on the partitioning algorithm, it is
lways bound by 1

Qv
≤ γv ≤ 1.

Let n = |Vs| and f = |xv|. So
⏐⏐V i

⏐⏐ = n
Qv

and
⏐⏐xiv⏐⏐ = f

Qf
.

In our performance model, we assume p processors operat-
ng in parallel. Each processor is associated with a private fast
emory (i.e., cache). The p processors share a slow memory

i.e., DRAM). Our objective in partitioning is to minimize the
verall processing time in the parallel system. After partitioning,
ach processor owns Qv ·Qf

p number of X i,j
s , and propagates its

X i,j
s into V i. Due to the irregularity of graph edge connections,

accesses into X i,j
s are random. On the other hand, using the CSR

format, the neighbor lists of nodes in V i can be streamed into
the processor, without the need to stay in cache. In summary, an
optimal partitioning scheme should:

• Let each X i,j
s fit into the fast memory;

• Utilize all of the available parallelism in the system;
• Minimize the total computation workload;
• Minimize the total slow-to-fast memory traffic;
• Balance the computation and communication load among

the processors.

Each round of feature propagation has n
Qv
· d · f

Qf
computation,

and 2· n
Qv
·d+8·n·γv ·

f
Qf

communication (in bytes).4 Computation
and computation over Qv · Qf rounds are:

gcomp(Qv,Qf ) = n · d · f

comm(Qv,Qf ) = 2 · Qf · n · d+ 8 · Qv · n · f · γv (13)

Note that gcomp(Qv,Qf ) is not affected by the partitioning
cheme. We thus formulate the following communication mini-
ization problem:

inimize
Qv ,Qf

gcomm(Qv,Qf ) = 2Qf · nd+ 8Qv · nf γv

ubject to QvQf ≥ p;
8nf γv

Qf
≤ Scache; Qv,Qf ∈ Z+; (14)

Next, we prove that without any graph partitioning we can ob-
tain a 2-approximation for this optimization problem for small
subgraphs.

Theorem 2. Qv = 1,Qf = max
{
p, 8nf

Scache

}
results in a 2-

approximation of the communication minimization problem Eq. (14),
for p ≤ 4f

d and 2nd ≤ Scache, irrespective of the partitioning
algorithm.

Proof. Note that since Qv,Qf ≥ 1 and γv ≥ 1/Qv , ∀Qv,Qf :

gcomm(Qv,Qf ) ≥ 2Qf nd+ 8Qvnf
1
Qv

≥ 8nf .

4 Given that sampled graphs are small, we use INT16 to represent the node
ndices. We use DOUBLE to represent each feature value.
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Set Qv = 1 and Qf = max
{
p, 8nf

Scache

}
. Clearly, γv = 1.

ase 1, p ≥ 8nf
Scache

In this case, Qf = p ≥ 8nf /Scache. Thus both
onstraints are satisfied. And,

comm (1, p) = 2ndp+ 8nf

= 8nf
(
pd
4f
+ 1

)
≤ 8nf · (1+ 1) = 16nf

due to p ≤ 4f /d.

Case 2, p ≤ 8nf
Scache

In this case, Qf = 8nf /Scache is a feasible solution.
nd,

comm

(
1,

8nf
Scache

)
= 2nd

8nf
Scache

+ 8nf

= 8nf
(

2nd
Scache

+ 1
)
≤ 8nf · (1+ 1) = 16nf

ue to 2nd ≤ Scache.
In both cases, the approximation ratio of our solution is en-

ured to be:

gcomm

(
1,max

{
p, 8nf

Scache

})
min gcomm(Qv,Qf )

≤
16nf
8nf
= 2

Note that this holds for Scache ≥ 2nd. So for a cache size of
256 KB, number of edges in the subgraph (i.e., nd) can be up to
28 K. Such upper bound on |Es| can be met by the subgraphs in
onsideration. Also, since f ≫ d, the condition p ≤ 4f /d holds
or most of the shared memory platforms in the market. Note
hat the above theorem is derived by a simple lower bounding on
he ratio γv for any (including the optimal) partitioning scheme.
owever, finding such optimal partitioning is computationally
nfeasible even on small subgraphs, since there are exponen-
ial number of possible partitioning. We thus do not provide
xperimental evaluation on this theorem. □

Using typical values n ≤ 8000, f = 512, and d = 15, then for
p to p ≤ 4f

d = 136 cores,5 the total slow-to-fast memory traffic
nder feature only partitioning is less than 2 times the optimal.
ecall the two properties (see the beginning of this section)
hat differentiate our case with the traditional label propagation.
ecause the graph size n is small enough, we can find a feasible
f ∈ Z+ solution to satisfy the cache constraint 8nf

Qf
≤ Scache.

Because the value f is large enough, we can find enough number
of feature partitions such that Qf ≥ p. Algorithm 7 specifies our
feature propagation.

Lastly, the feature only partitioning leads to two more impor-
tant benefits. Since the graph is not partitioned, load-balancing
(with respect to both computation and communication) is opti-
mal across processors. Also, our partitioning incurs almost zero
pre-processing overhead since we only need to extract continu-
ous columns to form sub-matrices. In summary, the feature prop-
agation in our graph sampling-based training achieves 1. Minimal
computation; 2. Optimal load-balancing; 3. Zero pre-processing
cost; 4. Low communication volume.

6. Runtime scheduling

6.1. Computation order of layer operations

Both the forward and backward propagation of GNN layers
(Eq. (4), (1), (5), (6) and (12)) involve multiplying a chain of three
matrices. Given a chain of matrix multiplication, it is known that

5 d here refers to the average degree of the sampled graph rather than the
raining graph. Thus, d value here is set to be lower than that in Section 4.
176
Algorithm 7 Feature propagation within sampled graph

Input: Gs (Vs, Es) with adjacency matrix Ãs; Node feature matrix
X (ℓ−1)

s ; Cache size Scache; Number of processors p
Output: Feature matrix X (ℓ)

s
1: n← |Vs| ; f ← length of the feature vector of a node;
2: Qf ← max

{
p, 8nf

Scache

}
; f ′ ← f /Qf ;

3: Column-partition X (ℓ−1)
s into Qf equal-size parts[

X (ℓ−1)
s

]
:, i·f ′:(i+1)·f ′

4: for r = 0 to Qf /p− 1 do
5: for j = 0 to p− 1 pardo
6: i← r + j · Qf /p
7:

[
X (ℓ)

s

]
:, i·f ′:(i+1)·f ′ ← Ãs ·

[
X (ℓ−1)

s

]
:, i·f ′:(i+1)·f ′

8: end for
9: end for

10: return X (ℓ)
s

different orders of computing the chain leads to different compu-
tation complexity. In general, we can use dynamic programming
techniques to obtain the optimal order corresponding to the
lowest computation complexity [17]. Specifically, for our training
problem, we have a chain of three matrices whose sizes and
densities are known once the subgraphs are sampled. Consider a
sparse matrix A ∈ Rn×n (with density δ), and two dense matrices
W 1 ∈ Rn×f1 and W 2 ∈ Rf1×f2 . To calculate AW 1W 2, there are
two possible computation orders. Order 1 of (AW 1)W 2 computes
the partial result P = AW 1 first and then computes PW 2. This
order of computation requires δ · n2

· f1 + n · f1 · f2 Multiply-
ACcumulate (MAC) operations. Order 2 of A (W 1W 2) computes
the partial result P = W 1W 2 first and then computes AP . This
order requires δ · n2

· f2 + n · f1 · f2 MAC operations. Therefore,
if f1 < f2, order 1 is better. Otherwise, we should use order 2.
Similarly, supposeW 3 ∈ Rn×f3 and our target is (W 1)

T AW 3. Then
order 1 of (AW 1)

T W 3 is better than order 2 of (W 1)
T (AW 3) if

and only if f1 < f3.
Consider a GraphSAGE layer ℓ. If f (ℓ−1) < f (ℓ), we should use

order 1 to calculate the forward propagation of Eq. (4), order 1
to calculate ∇W (ℓ)

◦

Ls of Eq. (12) and order 2 to calculate ∇X (ℓ−1)
s

Ls

of Eq. (12).
Note that the decision of the scheduler only relies on the

dimension of the matrices, and thus can be made during runtime
at almost no cost. In addition, the partitioning strategy presented
in Section 5.3 does not rely on any specific computation or-
der. In summary, the light-weight scheduling algorithm reduces
computation complexity without affecting scalability.

6.2. Scheduling the feature partitions

After partitioning the feature matrix (Section 5.3), the ques-
tion still remains how to schedule these partitions for further
performance optimization. Ideally, since the operations on the
partitions are completely independent, any scheduling would
lead to identical performance. However, in reality, the partitions
may undesirably interact with each other due to ‘‘false sharing’’
of data in private caches. If the size of each feature partition is
not divisible by the cacheline size, then in the private cache of
the processor owning partition i, there may be one cacheline con-
taining data of both partitions i and i+ 1, and another cacheline
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containing data of both partitions i − 1 and i. Therefore, if the
partitions i−1, i and i+1 are computed concurrently, there may
be undesirable data eviction to keep the three caches clean. So
the scheduler should try not to dispatch adjacent partitions at
the same time, and we follow the processing order as specified
by lines 5 and 6 of Algorithm 7 to achieve this goal.

When the number of processors is large or the number of
feature partitions is small (i.e., line 4 of Algorithm 7 finishes
in one iteration), it is inevitable to process adjacent partitions
in parallel. On the other hand, note that if the partition size
is divisible by the cacheline size, we can avoid ‘‘false sharing’’
regardless of the scheduling. The partition size equals w·|Vs|·f /Qf ,
here w specifies the word-length. Suppose the cacheline size

s Scline. Then our goal is to make |Vs| divisible by Scline/w. For
xample, if we use double-precision floating point numbers in
raining and the cacheline size is 128 bytes, then we can clip the
umber of subgraph nodes to be divisible by 16. Considering that
Vs| is in the order of 103, such clipping has negligible effect on
he subgraph connectivity and the training accuracy. The node
lipping can be performed before the induction step (line 9 of
lgorithm 2) by randomly dropping nodes in Vs. Therefore, the
lipping step incurs almost zero cost.

.3. Overall scheduler

Algorithm 8 Runtime scheduling (e.g., Frontier sampling)

Input: Training graph G (V, E,X); Ground truth labels Y ; L-
layer GNN model; Sampler parameters m, n, η; Parallelization
parameters pinter, pintra

utput: Trained GNN weights
1: { Gi } ← ∅ ▷ Set of unused subgraphs
2: while not terminate do ▷ Iterate over minibatches
3: if { Gi } is empty then
4: for p = 0 to pinter − 1 pardo
5: Gs ← SAMPLE (G (V, E)) with pintra; Clip nodes by

cacheline size
6: Transpose Gs by Algorithm 6
7: Add Gs and its transposed array Data to { Gi }

8: end for
9: end if
0: Gs ← Subgraph popped out from { Gi }

11: Construct GNN on Gs
12: Determine the matrix multiplication order by Section 6.1
13: Parallel forward and backward propagation on GNN
14: end while
15: return Trained GNN weights

Algorithm 8 presents the overall training scheduler. By Sec-
ion 4.3, multiple samplers can be launched in parallel without
ny data dependency. This is shown by lines 4 to 8. Note that
he clipping follows the objective specified in Section 6.2 and the
ranspose of Gs follows Algorithm 6. After the GNN is constructed,
he forward and backward propagation operations are paral-
elized by the techniques presented in Section 5. The scheduler
erforms two decisions based on the sampled subgraphs. The first
ecision (during runtime) is to perform node clipping to improve
ache performance (Section 6.2). The second decision (statically
erformed before the actual training) is to determine the order
f matrix chain multiplication in both forward and backward
ropagation to reduce computation complexity (Section 6.1).
Note that our scheduler is a general one, in the sense that the

raining can replace the frontier sampler with any other graph
ampling algorithm in a plug-and-play fashion. The processing by
he scheduler has negligible overhead.
177
Table 2
Dataset statistics.
Dataset Nodes Edges Attributes Classes Train/Val/Test

PPI 14,755 225,270 50 121 (M) 0.66/0.12/0.22
Reddit 232,965 11,606,919 602 41 (S) 0.66/0.10/0.24
Yelp 716,847 6,977,410 300 100 (M) 0.75/0.15/0.10
Amazon 1,598,960 132,169,734 200 107 (M) 0.80/0.05/0.15

Synthetic 220–225 223–230 50 2 (S) 0.50/0.25/0.25

(M): Multi-class classification; (S): Single-class.

7. Experiments

7.1. Experimental setup

We conduct experiments on 4 large scale real-world graphs as
well as on synthetic graphs. Details of the datasets are described
as follows:

• PPI [21]: A protein–protein interaction graph. A node repre-
sents a protein and edges represent protein interactions.
• Reddit [21]: A post–post graph. A node represents a post.

An edge exists between two posts if the same user has
commented on both posts.
• Yelp [26,30]: A social network graph. A node is a user. An

edge represents friendship. Node attributes are user com-
ments converted from text using Word2Vec [18].
• Amazon [30]: An item–item graph. A node is a product sold

by Amazon. An edge is present if two items are bought
by the same customer. Node attributes are converted from
bag-of-words of text item descriptions using singular value
decomposition (SVD).
• Synthetic graphs: Graphs generated by Kronecker genera-

tor [14]. We follow [14] and set the initiator matrices to be
proportional to the 2 by 2 matrix [[0.9, 0.5], [0.5, 0.1]]. We
generate two sets of Kronecker graphs. The first set consists
of graphs with fixed average degree of 16 and number of
nodes equals 220, 221, 222, 223, 224 and 225. The second set
consists of graphs with 220 nodes and the average degree
equals 8, 16, 32, 64, 128, 256 and 512.

The PPI and Reddit datasets are standard benchmarks used in
[4,6,7,9,12]. The larger scale graphs, Yelp and Amazon, are pro-
cessed and evaluated in [30,31]. We use the set of four real-world
graphs for a thorough evaluation on accuracy, efficiency and
scalability. Table 2 shows the specification of the graphs. We
use ‘‘fixed-partition’’ split, and the ‘‘Train/Val/Test’’ column shows
the percentage of nodes in the training, validation and test sets.
‘‘Classes’’ shows the total number of node classes (i.e., number of
columns of Y and Y in Eq. (3)). For synthetic graphs, we can only
generate the graph topology. The node attributes and the class
memberships are filled by random numbers.

For our graph sampling based GNN training, we open-source
two implementations in Python (with Tensorflow) and C++ (with
penMP), respectively.6 We use the Python (Tensorflow) version

for single threaded accuracy evaluation in Section 7.2, since the
baseline implementations are provided in Python with Tensor-
flow. We use the C++ version to measure scalability of our parallel
training in Sections 7.3, 7.4 and 7.7. The C++ implementation is
necessary, since Python and Tensorflow are not flexible enough
for parallel computing experiments (e.g., AVX and thread binding
are not explicit in Python). Our C++ implementation achieves
comparable accuracy as the Tensorflow one.

We run experiments on a dual 20-Core Intel R⃝ Xeon E5-2698
v4 @2.2 GHz machine with 512GB of DDR4 RAM. For the Python

6 Code available at: https://github.com/GraphSAINT/GraphSAINT.

https://github.com/GraphSAINT/GraphSAINT
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implementation, we use Python 3.6.5 with Tensorflow 1.10.0. For
the C++ implementation, the compilation is via Intel R⃝ ICC (-O3
flag). ICC (version 19.0.5.281), MKL (version 2019 Update 5) and
OMP are included in Intel Parallel Studio Xe 2018 update 3.

7.2. Evaluation on accuracy and efficiency

Our graph sampling-based training significantly reduces com-
putation complexity without accuracy loss. To eliminate the im-
pact of different parallelization strategies on training time, here
we run our implementation as well as all the baselines using
single thread. Fig. 2 plots the relation between accuracy (F1 micro
score) and sequential training time. To be consistent with the
settings in the original papers of the baselines, all measurements
here are based on the GNN models of two GCN/GraphSAGE layers.
Accuracy is measured on the validation set at the end of each
epoch. Between the two baselines [7,12], GraphSAGE [7] achieves
higher accuracy and faster convergence. Compared with [7], our
minibatch training achieves higher accuracy on all graphs, show-
ing that our graph sampler can preserve important characteristics
from the original training graph. Frontier, random walk and edge
sampling algorithms perform similarly on Reddit, Yelp and Ama-
zon. On PPI, random walk and edge sampling algorithms result in
lower accuracy than the frontier sampler. This is potentially due
to the fact that frontier sampler preserves some graph measures
better than simpler samplers such as Edge and RW [19]. Due to
the stochasticity in training, we define an accuracy threshold to
measure training time speedup. Let a0 be the highest accuracy
achieved by the baselines on a given dataset. We define the
accuracy threshold as a0−0.0025. Serial training time speedup is
calculated as: the time for the best performing baseline to reach
the threshold divided by the time for our model to reach the
threshold. We achieve serial training time speedup of 1.9×, 7.8×,
4.7× and 2.1× for PPI, Reddit, Yelp and Amazon, respectively.
As stated in Section 7.1, in this set of experiments, all the runs
are executed under the same Tensorflow framework using single
thread. Therefore, the speedup achieved by us is not related to our
parallelization strategies and is purely due to our graph sampling
based training algorithm. Such significant speedup verifies that
our minibatch training improves the computation efficiency by
avoiding ‘‘neighbor explosion’’ (see Section 3.2).

7.3. Evaluation on scalability

In the following, we evaluate scalability of the various opera-
tions (graph sampling, feature propagation and weight transfor-
mation) in training.

7.3.1. Scalability of overall training
For the proposed GNN training, Fig. 3 shows the parallel train-

ing speedup relative to sequential execution. The execution time
includes every training steps specified by lines 2 to 13 of Algo-
rithm 8 — 1. frontier graph sampling (with AVX enabled) and
subgraph transpose, 2. feature aggregation in the forward prop-
agation and its corresponding operation in the backward propa-
gation, 3. weight transformation in the forward propagation and
its corresponding operation in the backward propagation, and 4.
all the other operations (e.g., ReLU activation, sigmoid function,
etc.) in the forward and backward propagation. As before, we
evaluate scaling on a 2-layer GraphSAGE model, with small and
large hidden dimensions, f (1) = f (2) = 512 and 1024, respectively.
As shown by the plots A and D of Fig. 3, the overall training is
highly scalable, consistently achieving around 15× speedup on
40-cores for all datasets. The performance breakdown in plots
G and H of Fig. 3 suggests that sampling time corresponds to

only a small portion of the total training time. This is due to 1.
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Fig. 2. Time–Accuracy plot for sequential execution..

low serial complexity of our Dashboard based implementation,
and 2. highly scalable implementation using intra- and inter-
sampler parallelism. In addition, feature aggregation for Amazon
corresponds to a significantly higher portion of the total time
compared with other datasets. This is due to the higher degree
of the subgraphs sampled from Amazon. The main bottleneck
in scaling is the weight transformation step performing dense
matrix multiplication (see analysis in Section 7.3.4). The overall
performance scaling is also data dependent. For denser graphs
such as Amazon, the scaling of the feature aggregation step dom-
inates the overall scalability. For the other sparser graphs, the
weight transformation step has a higher impact on the training.
Lastly, our parallel algorithm can scale well under a wide range of
configurations — whether the hidden dimension is small or large;
whether the training graph is small or large, sparse or dense.

7.3.2. Scalability of parallel graph sampling
We evaluate the effect of inter-sampler parallelism for the

frontier, random walk and edge sampling algorithms, and intra-
sampler parallelism for the frontier sampling algorithm.

For the frontier sampling algorithm, the AVX2 instructions
supported by our target platform translate to maximum of 8
intra-subgraph parallelism (pintra = 8). The total of 40 Xeon
cores makes 1 ≤ pinter ≤ 40. Fig. 4. A shows the effect of pinter,
hen pintra = 8 (i.e., we launch 1 ≤ pinter ≤ 40 independent
amplers, where AVX is enabled within each sampler). Sampling
s highly scalable with inter-subgraph parallelism. We observe
hat scaling performance degrades when going from 20 to 40
ores, due to mixed effect of lower boost frequency and limited
emory bandwidth. With all the 20 cores in one chip executing
VX2 instructions, the Xeon CPU can only boost to 2.2 GHz, in
ontrast with 3.4 GHz for executing AVX instructions only on one
ore. Fig. 4.B shows the effect of pintra under various pinter. The
ars show the speedup of using AVX instructions comparing with
therwise. We achieve around 4× speedup on average. The scal-
ng on pintra is data dependent. Depending on the training graph
egree distribution, there may be significant portion of nodes
ith less than 8 neighbors, resulting in under-utilization of the
VX2 instruction. We can understand such under-utilization of
nstruction-level parallelism as a result of load-imbalance due to
ode degree variation. Such load-imbalance explains the discrep-
ncy from the theoretical modeling on the sampling scalability
Theorem 1).
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Fig. 4.C and 4.D show the effect of pinter for random walk and
dge sampling algorithms. Both sampling algorithms scale more
han 20× when pinter = 40. As we do not use AVX instructions
or these two samplers (i.e., pintra = 1, and the CPU frequency
s unaffected), the scalability from 20 cores to 40 cores is better
han that of the frontier sampler.
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7.3.3. Scalability of feature aggregation
Fig. 3 shows the scalability of the feature aggregation step us-

ing our partitioning strategy. We achieve good scalability (around
20× speedup on 40 cores) for all datasets under various feature
sizes, thanks to our caching strategy and the optimal load-balance
discussed in Section 5.3. According to the analysis, the scalability
of feature aggregation should not be significantly affected by the
subgraph topological characteristics. Therefore, we observe from
plots B and E of Fig. 3 that, the curves for the four datasets look
similar to each other.

7.3.4. Scaling of weight transformation
As discussed in Section 5.1, the weight transformation op-

eration is implemented by cblas_dgemm routine of the Intel R⃝

MKL [10] library. All optimizations on the dense matrix multi-
plication are internally implemented in the library. Plots C and
F of Fig. 3 show the scalability result. On 40 cores, average of
13× speedup is achieved. We speculate that the overhead of
MKL’s internal thread and buffer management is the bottleneck
on further scaling.

7.4. Effect of cache size

Since our partitioning strategy for feature aggregation (Sec-
tion 5.3) is based on the L2-cache size of the system, we evaluate
the cache miss rate under various cache sizes by simulation. We
use CSR format to represent the sparse adjacency matrix of the
subgraph and column major layout to represent the dense feature
matrix X s. We use the open-source simulator DynamoRIO [3] to
simulate our C++ implementation. We configure the system to
be 40 cores with two levels of cache, where the first level of
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Fig. 5. Training Time in Synthetic Graph..

Fig. 6. L2 Cache Miss Rate..

cache corresponds to the L2-cache of the real system. We vary
the size of the first level of private cache from 32 KB to 2048 KB.
We fix the size of the second level of shared cache to be 50MB.
We let the simulator to run one full training iteration and record
the cache miss rate for the first level of private cache. Fig. 6
shows the effect of cache size on cache miss rate. When the cache
size increases from 32 KB to 512 KB, the cache miss rate quickly
drops to below 5%. The parallel execution using our partitioning
strategy indeed leads to low cache miss rate. This indicates small
amount of slow-to-fast memory data traffic as a benefit of our
partitioning strategy.

7.5. Comparison with GPU

We compare the proposed training algorithm with GPU im-
plementation from Tensorflow. We run the GPU program on an
Nvidia Tesla P100 GPU with 16 GB of GDDR5 memory, with
the same Xeon CPU server as described in Section 7.1. Table 3
shows the performance of the proposed training algorithm on
CPU and the Tensorflow implementation on GPU. Both use the
same parallel graph sampling algorithm as described in Section 4.
For the CPU execution, we use all the available 40 cores. For
GPU program, the sampling is done on CPU with 40 cores, while
the rest parts are done on GPU. We use the frontier sampling
algorithm with node budget n = 8000 and pintra = 8. We choose
idden dimension f = 512 and record the average execution

time per iteration for 100 iterations. The GPU program runs faster
than the CPU program by 1.93×, 2.71×, 2.05× and 2.20× on PPI,
eddit, Yelp and Amazon dataset. Note that the peak performance
f the CPUs is only 3.5 TFLOPS while the peak performance of the
PU is 10.3 TFLOPS. As stated in Section 5, the proposed parallel
raining algorithm scales up to 136 cores on CPU. On a 64- or 128-
ore machine, the proposed algorithm would out-perform GPU
ased on our modeling (Section 5.3). Importantly, the fast training
n GPU also indicates the effectiveness of our graph sampling
ased minibatch algorithm as well as our parallelization strategy
n the frontier sampler.
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Table 3
Execution time (s) per iteration (hidden dimension = 512).
Dataset CPU GPU

PPI 0.1974 0.1021
Reddit 0.3676 0.1357
Yelp 0.2917 0.1420
Amazon 0.4416 0.2004

7.6. Evaluation on synthetic graphs

Since the largest available real-world dataset for GNN training
(i.e., Amazon) contains only about 1.5 million nodes, we generate
synthetic graphs of much larger sizes to perform more thorough
scalability evaluation. In the left plot of Fig. 5, the sizes of the
synthetic graphs grow from 1 million nodes to around 33 million
nodes. All synthetic graphs have average degree of 16. We run
a 2-layer GNN with hidden dimension of 512 on the subgraphs
of the synthetic graphs. The vertical axis denotes the time to
compute one iteration (i.e., the time to perform forward and
backward propagation on one minibatch subgraph). The sub-
graphs are all sampled by the frontier sampling algorithm with
the same sampling parameters of n = 8000 and m = 1000.
With the increase of the training graph size, the iteration time
converges to a constant value of around 100 ms. This indicates
that our parallel training is highly scalable with respect to the
graph size. When increasing the number of graph nodes, we
keep the average degree unchanged. Therefore, the degree of the
sampled subgraphs also keeps unchanged (due to the property of
frontier sampling). Since we set the node budget n to be fixed,
he subgraph size (in terms of number of nodes and edges) in
ach iteration is approximately independent of the total number
f nodes in the training graph. So the cost to perform one step of
radient update does not depend on the training graph size (for
given training graph degree).
In the right plot of Fig. 5, we fix the graph size as |V| = 220 and

ncrease the average degree. Under the same sampling algorithm,
f the original graph becomes denser, the sampled subgraphs are
ore likely to be denser as well. The computation complexity of

eature aggregation is proportional to the subgraph degree. We
bserve that the iteration time approximately grows linearly with
he average degree of the original training graph. This indicates
hat our parallel training algorithm can handle both sparse and
ense graphs very well.

.7. Deeper learning

Although state-of-the-art training methods [4,6,7,9] are not
valuated on GNN models deeper than 3 layers, adding more lay-
rs in a neural network is proven to be very effective in increasing
he expressive power (and thus accuracy) of the network [22].
ere we evaluate the efficiency and overall training speedup
f our GNN implementation compared with [7], under various
umber of layers using 40 processors. The evaluation is based on
ur C++ implementation.
We first evaluate the computation efficiency. As discussed in

ection 3.2, layer sampling based training methods such as [7]
uffer from ‘‘neighbor explosion’’. Therefore, on deep models,
here may be significant amount of redundant computation across
raining iterations. Recall that we analyze the per epoch compu-
ation complexity in Section 3.2, under the two cases of large and
mall batch sizes respectively. Fig. 7 shows the severity of ‘‘neigh-
or explosion’’ by visualizing the number of sampled nodes per
NN layer for the two training methods. Denote L as number of
raph convolution layers. The minibatch sampling of [7] proceeds
s follows. [7] first randomly pick the r number of root nodes
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Fig. 8. Comparison of training time on deep GNN models..

from the output of the last graph convolution layer (i.e., layer-
L). Then, to generate the layer ℓ − 1 samples, it randomly pick
(ℓ) neighbors of each layer ℓ sampled nodes. [7] completes the
minibatch construction when it has finished picking the input
nodes of layer 1. Following the recommended setting of [7], we
set r = 512, s(L) = 25 and s(ℓ) = 10 for 1 ≤ ℓ ≤ L − 1.
Regarding our proposed training algorithm, since the sampling is
performed on the training graph rather than the GNN, all layers
have the same |Vs| number of nodes. Fig. 7 shows the number
of unique sampled nodes per layer for the two training methods.
When the GNN model is deep, [7] requires orders of magnitude
more samples than our training method. In addition, the number
of sampled nodes of [7] eventually converges to the full graph size
|V| when the GNN depth is high. In summary, Fig. 7 empirically
verifies the complexity analysis in Section 3.2 and shows the
advantage in high training efficiency of our method.

We further compare the overall training time for deep GNN
models. As shown in Fig. 8, we increase the GNN depth from
L = 1 to L = 4, and set the sampling parameters as described
in the above paragraph. Execution of both training methods uses
all the 40 processing cores. We do not consider the difference
in convergence rate and thus only measures the per-iteration
execution time. We normalize the training time by setting the
1-layer GNN execution time as 1. When L ≥ 3, the implementa-
ion of [7] results in prohibitively high training cost on PPI and
eddit, and throws runtime error on Yelp and Amazon. On the
ther hand, the training time of our method scales almost linearly
ith respect to the model depth. We conclude that our mini-
atch training algorithm, together with the parallelization and
cheduling techniques, significantly facilitate the development
nd deployment of deeper GNN models.

. Discussion

This work proposed co-design of the GNN minibatch training
lgorithm and the corresponding parallelization strategy. We next
iscuss potential extensions to our parallel training algorithm.

ardware acceleration. Our minibatch training algorithm can be
sed to facilitate hardware accelerator design as well. Apart from
igher computation efficiency, another benefit of constructing
181
minibatches by subgraphs is the reduction in communication
cost. Suppose we use a resource-constrained hardware accel-
erator (e.g., FPGA) to speedup GNN training. We can sample
small subgraphs so that the features of the subgraph nodes fit
in the on-chip memory (whose typical size is tens of mega bits).
Each iteration, once the input node features of the subgraph
is transferred on-chip, the FPGA can perform the full forward
and backward propagation without any communication to the
external DDR memory. Therefore, we potentially achieve close-
to-peak computation performance on the FPGA. The work in [29]
has developed a high-performance accelerator on the CPU-FPGA
heterogeneous platform using our graph sampling based training
algorithm. They quantify the feasibility of implementing the var-
ious training algorithms [4,6,7,9] on hardware by a metric called
computation–communication ratio γ , where higher value of γ in-
dicates lower overhead in external memory communication. They
further show that our algorithm achieves significantly higher γ

than the other methods [4,6,7,9].

Distributed processing. The graph sampling based minibatch
training is suitable to be executed in the distributed environment.
After partitioning the training graph in distributed memory, each
processing node can perform graph sampling independently on
the local partition. Afterwards, forward and backward propaga-
tion can be executed without data access to the remote memory.
In order to ensure convergence quality, shuffling of the node
and edge data is required during the training. The optimal shuf-
fling probability may then be derived given the graph sampling
algorithm and the connectivity among the processing nodes. It
is worth noticing that on each processing node, we can still
locally speedup the forward and backward layer computation
by designing hardware accelerators or using the parallelization
strategy shown in this paper.

9. Conclusion and future work

We presented an accurate, efficient and scalable GNN train-
ing method. Considering the redundant computation incurred in
state-of-the-art GNN training, we proposed a graph sampling-
based minibatch algorithm which ensures accuracy and efficiency
by resolving the ‘‘neighbor explosion’’ challenge. We further pro-
posed parallelization techniques and a runtime scheduler to scale
the graph sampling and overall training to large number of pro-
cessors.

We will extend our graph sampling based training by inte-
grating other graph sampling algorithms and evaluating their
impact on learning accuracy. We will also work on the theoretical
foundation to understand the convergence property of the graph
sampling based minibatch training.
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