
Model-Architecture Co-Design for High
Performance Temporal GNN Inference on FPGA

Hongkuan Zhou∗§,Bingyi Zhang∗§,Rajgopal Kannan†,Viktor Prasanna∗,Carl Busart†
∗University of Southern California †US Army Research Lab

∗{hongkuaz,bingyizh,prasanna}@usc.edu †{rajgopal.kannan.civ,carl.e.busart.civ}@army.mil

Abstract—Temporal Graph Neural Networks (TGNNs) are
powerful models to capture temporal, structural, and contextual
information on temporal graphs. The generated temporal node
embeddings outperform other methods in many downstream
tasks. Real-world applications require high performance infer-
ence on real-time streaming dynamic graphs. However, these
models usually rely on complex attention mechanisms to capture
relationships between temporal neighbors. In addition, maintain-
ing vertex memory suffers from intrinsic temporal data depen-
dency that hinders task-level parallelism, making it inefficient
on general-purpose processors. In this work, we present a novel
model-architecture co-design for inference in memory-based
TGNNs on FPGAs. The key modeling optimizations we propose
include a light-weight method to compute attention scores and
a related temporal neighbor pruning strategy to further reduce
computation and memory accesses. These are holistically coupled
with key hardware optimizations that leverage FPGA hardware.
We replace the temporal sampler with an on-chip FIFO based
hardware sampler and the time encoder with a look-up-table.
We train our simplified models using knowledge distillation to
ensure similar accuracy vis-á-vis the original model. Taking
advantage of the model optimizations, we propose a principled
hardware architecture using batching, pipelining, and prefetching
techniques to further improve the performance. We also pro-
pose a hardware mechanism to ensure the chronological vertex
updating without sacrificing the computation parallelism. We
evaluate the performance of the proposed hardware accelerator
on three real-world datasets. The proposed model reduces the
computation complexity by 84% and memory accesses by 67%
with less than 0.33% accuracy loss. Compared with CPU/GPU,
our FPGA accelerator achieves 16.4/2.3× speedup in latency
and 0.27% improvement in accuracy compared with the state-
of-the-art inference algorithm. To the best of our knowledge, this
is the first work that performs model-architecture co-design on
memory-based Temporal Graph Neural Networks.

Index Terms—Temporal Graph Neural Network, Hardware
Architecture, FPGA

I. INTRODUCTION

The acceleration of static GNNs operating on structural and
contextual information to produce node/link embeddings on
static graphs is a burgeoning area of research. Proposed tech-
niques range from algorithmic model optimizations (pruning
and compression [1]–[3]) to dedicated hardware accelerators
[4]–[6]. These efforts achieve massive task parallelism, allow-
ing static GNNs to be deployed accurately and efficiently on
large-scale graphs for a variety of applications (recommender
systems [7], [8], knowledge graph reasoning [9], [10], fraud
detection [11] etc.).

§Equal contribution

However, most real world graphs also contain temporal
information that is sensitive both to duration (longevity) and
chronology. For example, interactions in social networks are
often timestamped, components of knowledge graphs have
duration-limited validity and chronological ordering of graph
signals is critical for real-world tasks like fraud detection and
event prediction. Thus Temporal GNNs (TGNNs) [12]–[16]
that generate node embeddings also capturing (evolving)
temporal information have become popular.

In production environments, TGNNs are usually used to
compute dynamic node embeddings on the upcoming stream
of graph signals for downstream tasks. However, several
unique characteristics of TGNNs make them inefficient for
deployment on General Purpose Processors (GPPs). First,
TGNNs are significantly more compute-intensive. In order to
accurately capture the evolving nature of temporal neighbor-
hoods, most TGNNs [12], [13], [17], [18] rely on a tem-
poral attention mechanism (adopted from Transformer [19])
to aggregate features from temporal neighbors along with
additional sequence models like RNNs and GRUs. An artifact
of this mechanism is that it requires computing additional
“keys” and “queries” for each temporal neighbor (more than
2× the number of operations than a mean or max pooling
aggregator). Second, graph signals can appear asynchronously,
at varying rates. Temporal neighbor sampling and vertex
information updates associated with these signals lead to
intrinsic sequential dependencies which require the system to
process small batches. This raises the issue of implementation
platform. Current TGNN implementations are mostly GPU
focused, where the coarse-grained parallelism usually leads
to significantly worse performance on small versus large
batches. Further, both latency and throughput of processing
these signals is important. State-of-the-art works like [17]
hide latency by offlining part of the message passing process.
This requires exponential amount of extra memory to cache
intermediate results making it hard to scale to large dynamic
graphs while also not decreasing computational complexity.

We believe that while algorithmic optimizations per se are
useful in partially solving the above challenges, a more holistic
approach that also leverages the fine-grained parallelism,
low-latency on-chip memory (for customized memory access
patterns), and high density resources (programmable DSPs
for customized data paths) of hardware platforms such as
FPGAs can provide a superior overall solution.

In this paper, we present a model-architecture co-design

ar
X

iv
:2

20
3.

05
09

5v
1

 [
cs

.A
R

]
 1

0
M

ar
 2

02
2

for high-performance TGNN inference on FPGA. To the
best of our knowledge, this is the first such co-design
framework that jointly optimizes both throughput and latency,
consisting of a suite of algorithmic model optimizations to
solve computational and memory bottlenecks imposed by
model constraints and carefully mapped to maximize FPGA
architectural support for performance acceleration. We begin
with an analysis of the computation processes of general
memory-based TGNNs along with a case study evaluating
computation-communication characteristics. Based on the
identified bottlenecks, we perform both algorithmic and
hardware-specific optimizations to make TGNN inference
computationally tractable with negligible accuracy loss. We
design and implement our hardware accelerator on two
different FPGAs and demonstrate high throughput and low
latency TGNN inference with negligible accuracy loss on real-
world datasets. We summarize our main contributions below:
• We propose a light-weight temporal attention mechanism

and a related neighbor pruning strategy which greatly
reduce the computation and memory accesses at infer-
ence. We design a knowledge distillation setup to train
our simplified models to ensure comparable accuracy.

• To better leverage the FPGA hardware, we propose
FPGA-specific optimizations that replace the temporal
sampler with a FIFO-based hardware sampler and replace
the time encoder with a Look-up-Table (LUT) based time
encoder. We use a hardware-based mechanism to rapidly
maintain the vertex information up-to-date. We design
and implement a hardware accelerator using techniques
including batching, pipelining, and prefetching to achieve
massive computation parallelism.

• We propose a predictive performance model for our hard-
ware accelerator to estimate the performance based on
algorithm parameters, design configurations, and memory
characteristics.

• We implement the proposed design on state-of-the-art
FPGA platforms Xilinx Alveo U200 and Xilinx ZCU104.
Compared with the baseline, our hardware accelerators
on ZCU104/U200 achieve 2.00/5.04× improvement in
latency and 2.46/8.81× improvement in throughput com-
pared with the CPU/GPU baselines.

II. TEMPORAL GRAPH NEURAL NETWORKS

Given a dynamic graph G(V, E) where nodes and edges
are associated with timestamps representing their appear-
ance/disappearance, the TGNN inference problem aims at
encoding contextual, structural, and temporal information of
nodes at specific times into dynamic node embeddings and
maintaining up-to-date node memory. Note that TGNN infer-
ence is distinct from the inference (link prediction etc.) carried
out by downstream tasks. In this work, we choose to use the
memory-based TGNNs which achieve state-of-the-art accuracy
as the baseline models to optimize. We briefly describe the
memory-based TGNN inference process below.

For each node v, memory-based TGNNs maintain a node
memory vector sv that summarizes its status. A message

MSG(m) is generated whenever a graph signal m related to
v occurs. Multiple related messages from v’s receptive field
(of neighbors) N (v), are combined by an aggregator function
AGGR. These are then used to update sv via an update
function UPDT. sv is then fed as an input feature into an
attention-based GNN to generate the output node embedding
at the current timestamp hv .

sv = UPDT(sv,AGGR(MSG({m,m ∈ N (v)}))) (1)

hv = GNN(Gv, {su, u ∈ Gv}), (2)

where Gv denotes v’s supporting temporal neighbors (sampled
from the past neighbors of v).

The process in Equation (1)-(2) is computed both at training
and inference. Since dynamic node labels are difficult to
acquire and hardly provide enough information on evolving
graphs, TGNNs are usually trained by self-supervision from
the temporal edges. Under this setup, the temporal edges which
need to be predicted by an external downstream edge classifier
are itself fed to the TGNN models as input during training,
creating an “information leak” problem [13]. To solve this,
the TGNN caches the messages of the current graph signals
rather than directly use them as input. When a new graph
signal arrives, the UPDT function takes input from the cached
messages instead of using the message of the current signal
to update the node memory. Therefore, at inference, to be
consistent with the training phase, we need to first update the
node memory by the cached messages (Equation (1)) before
aggregating from them (Equation (2)).

A. Inference Performance Metrics

When deployed for real-world applications, TGNN-based
systems usually operate on upcoming graph signals in batches,
formed either by fixed number of graph signals or by the graph
signals in fixed time windows. To quantify the performance of
TGNN inference, we formally define our evaluation metrics
of throughput and latency. Since most existing datasets only
have new edges as graph signals, we define the throughput as
the number of new edges that can be processed per second.
Defining the execution time as the total time to generate the
dynamic node embeddings and maintain the node memory up-
to-date, we define throughput as

TGNN throughput (E/s) =
of new edges

execution time (s)
, (3)

We define TGNN inference latency as the time to output the
required dynamic node embeddings once we receive a batch
of graph signals. We follow the general setup in [13], [16],
[17] for processing incoming graph signals, where temporal
dependencies are ignored for nodes in the same batch while the
node memory and the cached messages are updated in order.
For the graph signals in one batch, we perform one forward
propagation and generate the corresponding dynamic node
embeddings for all the involved nodes, which is the common
inference scenario for many applications. For example, a fraud
detection application would like to frequently examine all

TABLE I
NUMBER (#) AND PERCENTAGES (%) OF THOUSANDS OF MEMS (KMEM) AND THOUSANDS OF MACS (KMAC) AND THE AVERAGE EXECUTION TIME

ON CPU AND GPU PER DYNAMIC NODE EMBEDDING.

Wikipedia Reddit
kMEM kMAC Exec. Time (ns) kMEM kMAC Exec. Time (ns)

% # % 1 Thread 32 Threads GPU # % # % 1 Thread 32 Threads GPU

sample 0.0 0.3% 0 0% 9 9 8 0.1 1.1% 0 0% 11 9 8
memory 5.2 91.4% 48.4 6.0% 273 40 8 5.2 90.7% 48.4 6.0% 198 47 9

GNN 0 0% 703.5 93.6% 296 33 4 0 0% 703.5 93.6% 297 31 3
update 0.5 8.3% 0 0% 23 21 19 0.5 8.2% 0 0% 27 25 15

total 5.7 100% 751.9 100% 601 103 39 5.8 100% 751.9 100% 533 112 35

users involved in newly appearing transactions. Our goal is
to increase the throughput and decrease the latency for TGNN
inference while maintaining similar accuracy.

B. Case Study: Memory-Based TGNN Inference

In this subsection, we perform a detailed case study to
analyze the computation complexity, memory accesses, and
runtime profiling of the memory-based TGNN inference. TGN
[13] provides a general framework for node memory-based
TGNNs and benchmarks the performance with different UPDT
and GNN functions. Among these memory-based TGNN
variants, 1-layer attention-based GNN with GRU memory
updater (TGN-attn) has the highest accuracy to complexity
ratio. Hence, we focus on optimizing the performance of TGN-
attn in this work. Nevertheless, our proposed optimizations
also apply to other TGNNs.

In TGN-attn, when a graph signal of new interaction be-
tween nodes i and j appears, two messages are generated

mi = si||sj ||fe||Φ(∆t) (4)
mj = sj ||si||fe||Φ(∆t) (5)

where || denotes concatenation, fe is the edge feature vector,
and ∆t the time difference between the most recent node
memory s and the timestamp of the graph signal. Φ(·) is a
time encoder similar to the positional encoder in Transformer
with two learnable vectors ω and φ

Φ(∆t) = cos(ω∆t+ φ) (6)

All Messages to a node in a batch are aggregated with the
”Most-Recent” aggregator which simply keeps the most recent
message of each temporal node. The aggregated message mi

is then sent to a GRU cell which updates the node memory
si using the previous node memory as hidden state and
aggregated messages as input features, as shown below.

ri = σ(Wirmi + bir +Whrsi + bhr) (7)
zi = σ(Wizmi + biz +Whzsi + bhz) (8)
ni = tanh(Winmi + bin + ri(Whnsi + bhn)) (9)
si = (1− zi)ni + zisi (10)

where W and b denote learnable weights and biases. The
updated node memory is now combined with the static node

features fi and fed into the attention aggregator. Since the
node memory already contains the status of the nodes in
the past, the attention aggregator can focus on recent graph
signals. A fixed amount of most recent temporal neighbors
j ∈ Ni are sampled and fed to the attention aggregator

f ′i = si +Wsfi + bs (11)
q = Wq [f ′i ||Φ(0)] + bq (12)

K = Wk

[
f ′j ||eij ||Φ(∆t))

]
+ bk (13)

V = Wv

[
f ′j ||eij ||Φ(∆t))

]
+ bv (14)

hi = softmax

(
qKT√
|Nv|

)
V (15)

where the attention aggregator performs vector-vector mul-
tiplication between the queries q and keys K to determine
attention scores hi. After computing the required dynamic
node embeddings in each batch, we obtain the updated node
memory {si} and the messages {mi} of the involved nodes
{i}. We update the node memory and cache the messages in
a global copy which is usually stored in the external memory.

For analysis, we divide the whole process into four parts:
sample, memory, GNN, and update. The sample part accesses
the dynamic graph and samples most recent temporal neigh-
bors. The memory part aggregates the messages and computes
the updated node memory. The GNN part applies attention
aggregator to generate the dynamic node embeddings. The
update part writes the updated node memory back and updates
the cached messages. We calculate the number of MEMory ac-
cesses (MEMs) (assuming the learnable parameters are stored
on-chip) and Multiplication and ACcumulations (MACs) in
each part on two popular dynamic graphs Wikipedia and
Reddit [12]. For each node, we follow the setup in TGN
[13] and sample 10 most recent neighbors from all temporal
neighbors as the supporting nodes. We run an optimized ver-
sion of the open-sourced code 1, which replaces the inefficient
python loops with batched operations, on 1) a single thread
in the Intel Xeon Gold 5120 CPU 2) 32 threads on the same
CPU 3) an Nvidia Titan Xp GPU and measure the execution
time of the four parts. Table I shows the complexity and
execution time in the four parts. The memory accesses are
primarily in the memory part to access the messages and

1https://github.com/twitter-research/tgn

https://github.com/twitter-research/tgn

edge features. The computation is dominated by the GNN part
to aggregate from selected temporal neighbors. For a serial
processor (1CPU), the bottleneck is the computation in the
GNN part. For highly parallel machines (32 CPU threads and
GPU), the bottleneck lies in the memory part that accesses the
memory and aggregate the messages. Although the number of
memory updates is not enormous in the update part, due to
the need to maintain the sequential order, it still becomes the
bottleneck when executed on a highly-paralleled machine with
complex cache hierarchy.

III. MODEL-ARCHITECTURE CO-DESIGN

We use our case study on memory-based TGNN inference
in Section II-B to identify three key points in designing an
optimized inference system:

1) GNN computation accounts for more than 80% of the
total time and is the bottleneck on a single CPU core
with more than 50% of the time spent on computing the
attention scores (Equation (12) and (13)). It is linear in
the number of supporting temporal neighbors.

2) The time encoding maps a scalar time interval to a vector
which is further multiplied with weight matrices Wir,
Wiz , Win, Wq , Wk, and Wv . These vector-matrix
multiplications can be removed if we can reverse the
computation order.

3) On a massively parallel architecture, the key bottleneck
is fetching and updating the node memory and messages
of the supporting nodes from and to external memory.

Based on these key points, we propose a model-architecture
co-design by exploiting FPGA-specific features. FPGAs con-
sist of massive on-chip memory – Block RAMs (BRAMs)
and Ultra RAMs (URAMs) that allow fast random memory
access in high bandwidth. The built-in DSPs can perform
large number of arithmetic operations in each cycle. Based
on these features, we propose a simplified temporal attention
mechanism (Section III-A) and a temporal neighbor pruning
strategy (Section III-B) which reduce the execution time in
DSPs and enable data pre-fetching. In addition, the DSPs
of FPGAs can be programmed into computation arrays that
enable fine-grained parallelism for batched processing. We
replace the time encoding and the subsequent vector-matrix
multiplications with look-up tables (LUTs) (Section III-C)
which are stored in the programmable on-chip memory of
FPGAs for fast accesses. Besides, the on-chip memory of
FPGAs can be programmed into customized cache structures
(Section IV-B) which facilitate fast updates to vertex data.

A. Simplified Temporal Attention

As seen in Equation (15), the traditional temporal attention
mechanism requires vector-vector multiplication among
neighbors which consumes a lot of DSPs on FPGAs. We note
that temporal neighbors in dynamic graphs can be naturally
ordered by timestamp. We leverage this unique characteristic
to design a simplified attention aggregator that operates
on fixed-length lists of n timestamp-sorted (not necessarily
unique) temporal neighbors. Given a node u at timestamp tu

with n sorted temporal neighbors at respective timestamps
tv0 ≤ tv1 ≤ · · · ≤ tvn−1 , we compute its attention score as

α′(u) = Softmax(a+Wt∆t
u) (16)

where a is a learnable constant attention vector shared among
all nodes and Wt is a learnable weight matrix that maps node-
specific time difference ∆tu = [tu − tv0 , · · · , tu − tvn−1] to
respective offsets of the attention logits. The intuition behind
Equation (16) is that on a dynamic graph, attention scores
should be sensitive to chronology of neighbors. Since each
node u has a specific neighbor interaction frequency, we use
this node-specific offset to produce its attention score. Our
simplified attention mechanism eliminates the vector-vector
multiplication operations (Equation (15)) which dramatically
saves the DSP usage on FPGAs.

To learn a and Wt, we apply a simplified knowledge
distillation [20] setup under which we train student models
(with our simplified temporal attention aggregators) under both
self-supervision from temporal edges and supervision from a
teacher model with the vanilla temporal attention aggregator.
We add an additional soft cross-entropy loss la between the
simplified attention logits α′ = a + Wt∆t and the vanilla
attention logits α to encourage the student models to mimic
the behaviour of the teacher model

la = −
∑
v

Softmax(α′(v)/T) · Softmax(α(v)/T) (17)

where T is the temperature that controls how much the student
model learns from the teacher model.

B. Temporal Neighbor Pruning

The Transformer attention mechanism shown in Equation
(11)-(14) computes the attention scores after the computation
of the keys K and queries Q. In contrast, our simplified
temporal attention mechanism computes the attention scores
only using the time difference ∆t of the temporal neigh-
bors as the input. This allows models to quickly determine
which temporal neighbor is more important before fetching
the hidden features from them all. Although the amount of
computation and number of memory accesses are the same for
each temporal neighbor, the neighbors with higher attention
scores contribute more to the output hidden features, which
naturally leads to our attention score-based temporal neighbor
pruning strategy. Under the simplified attention mechanism
where only the values V needs to be computed, performing
temporal neighbor pruning directly leads to a linear reduction
in computation and memory accesses. For a given pruning
budget (number of temporal neighbors to aggregate from),
after computing the logits of the simplified attention scores,
we apply softmax function only on the temporal neighbors
with top logit values and compute their V .

C. Time Encoding Look-Up-Table

The time encoder in Equation (6) maps scalar time frames
to vectors. These vectors are later multiplied with the weight

0 5 10 15 20 25
0

1

2

3

4

5
·104

∆t (days)

Fr
eq

ue
nc

y

0 5 10 15 20 25
0

1

2

3

4

5
·105

∆t (days)

Fig. 1. Frequency of input ∆t of the time encoder on the Wikipedia (left)
and Reddit (right) datasets.

matrices in the GRU memory updater and the GNN aggregator.
This whole process accounts for around 30% of the total
computation in the TGNN model with our simplified attention
mechanism. This can be completely avoided if the computation
order is reversed and the vector-matrix multiplication is pre-
computed. However, the time encoding process involves a
nonlinear trigonometric function which does not permit pre-
computation. To solve this problem, we replace the time
encoding process with LUT operations which transforms the
nonlinear operations to piece-wise linear ones. We analyze the
input ∆t of the time encoder and observe that it follows the
power law where most inputs are close to 0. Based on the
intuition that the output vectors should distinguish different
length of time frames, we divide the range of the input ∆t to
128 intervals with equal number of ∆t occurrences in each
interval. The output time encoding vectors in each interval are
stored in one entry in the LUT, which is learned in the training
process. At inference, we pre-compute the product of each
entry in the LUTs with the weight matrices and store them
in the fast on-chip memory. Our LUT-based time encoder can
directly output the hidden features after weight application for
any given time frame within 1 clock cycle.

IV. HARDWARE MAPPING AND OPTIMIZATIONS

Figure 2 illustrates the overview of the proposed architecture
that executes the inference process of TGNN (Algorithm 1).
The proposed architecture consists of the following parts:
• Input: The data packets of the new edges are sent to

FPGA accelerators through the Direct Memory Access
(DMA) unit.

• Graph Storage The FPGA board consists of an external
DDR memory and an FPGA chip. The external DDR
memory stores various vertex information, including the
Vertex Mailbox {mv : v ∈ V}, the Vertex Memory Table
{sv : v ∈ V}, the vertex feature vectors {fv : v ∈ V},
and the Vertex Neighbor Table {Nmr(v) : v ∈ V}.

• Accelerator: The proposed hardware accelerator con-
sists of four parts – the Edge Parser, the Data Loader,
the Updater, and the Computation Units. The memory
controller handles the data transmissions between the
external memory and the accelerator. The Edge Parser
receives the new edges from the host processor through
DMA and parses the raw information of the new edges.
The Data loader loads the required inputs from external
memory. The Updater ensures the chronological order

Algorithm 1 Inference process of Memory-based TGNN on
the proposed accelerator
Input: Graph G(E ,V); A edges stream Enew that incoming edges

follow the chronological order; Old vertex memory {sv : v ∈
V}; Old cached messages {mv : v ∈ V}; Vertex feature vectors
{fv : v ∈ V}; Edge feature vectors {fe : e ∈ E};

1: { % Process batches of new edges in chronological order %}
2: for each batch {e(u, v,fe, te)} ∈ Enew do
3: {% update vertex memory %}
4: {su} = {UPDT(mu, su, te)}
5: {sv} = {UPDT(mv, sv, te)}
6: {% update cached messages %}
7: {mu} = {su||sv||fe||Φ(te)}
8: {mv} = {sv||su||fe||Φ(te)}
9: {% compute output embeddings %}

10: {hu} = {GNN((su,fu, te), {(sz,fz, tz), z ∈ N (u)})}
11: {hv} = {GNN((sv,fv, tv), {(sz,fz, tz), z ∈ N (v)})}
12: {% update vertex neighbors %}
13: {N (v) = UpdateNeighbor(N (u), v)}
14: {N (u) = UpdateNeighbor(N (v), u)}
15: end for

of the updated vertex information and sends the up-
dated vertex information back to external memory. The
Computation Units (CUs) perform the key computation
stages of TGNN inference where each CU has its own
Memory Update Unit (MUU) to generate the updated
vertex memory and an Embedding Unit (EU) to generate
the updated vertex embedding.

Runtime: At runtime, the accelerator first receives a new batch
of edges (line 2 of Algorithm 1). Then, the MUU calculates
the vertex memory of involving vertices and the Updater
updates the vertex memory and vertex cache messages (line
3-8 of Algorithm 1) in the external memory of FPGA board.
After that, the EU calculates the vertex embeddings for the
downstream tasks (line 9-11 of Algorithm 1) and the vertex
neighbor table is updated based on the new edges (line 12-14
of Algorithm 1). To improve the overall throughput, we adapt
batching, fine-grained task pipelining and prefetching to fully
exploit the parallelism (Section IV-C).

A. Data Structure

We represent each edge in a dynamic graph as
e(src, dst,fe, te) where src, dst, fe, te denote the source
index, destination index, feature vector, and timestamp, re-
spectively. Vertex information consists of the Vertex Mailbox
(cached messages), the Vertex Memory Table, and the Vertex
Neighbor Table. Each row of the Vertex Mailbox contains the
most recent message mv of a vertex. Each row of the Vertex
Memory Table contains the most recent vertex memory sv of
a vertex. Each row of the Vertex Neighbor Table contains the
indices of the most recent mr neighbors Nmr(v) of a vertex.

B. Hardware Modules

In the proposed accelerator, the UPDT(·) function is imple-
mented as a GRU (Equation (7), (8), (9), (10)) and the GNN(·)
function is implemented as a 1-layer GNN with attention
mechanism (Equation (16)). The GRU is mapped to the MUU
and the 1-layer GNN is mapped to the EU. The CU performs

ed
ge

s
External Memory of FPGA Board

Vertex Feature
v1 · · ·
v2 · · ·
· · · · · ·

Vertex Mailbox
v1 · · ·
v2 · · ·
· · · · · ·

Vertex Memory

v1 · · ·
v2 · · ·
· · · · · ·

Neighbor Table

v1 · · ·
v2 · · ·
· · · · · ·

Memory Controller

D
M

A Edge
Parser

FPGA

Data Loader
Memory
Loader

Neighbor
Loader

Mail
Loader

Feature
Loader

Updater
Memory
Updater

Neighbor
Updater

Mail
Updater

Feature
Updater

Computation Unit (CU)
Memory

Update Unit
Embedding

Unit Xilinx Alveo U200

SLR0

CH0

Computation
Unit

SLR1

CH1 CH2

Edge Parser

Static Region
(FPGA Shell)

SLR2

CH3

Computation
Unit

Updater

Data Loader

Fig. 2. The principled hardware architecture for TGNN on FPGA platform (Left). Mapping of the architecture on Xilinx Alveo U200 platform (Right).

batched execution for vertex information updating. When
MUU is ready to receive new inputs, the vertex messages
{mv : v ∈ Vb} and vertex memory {sv : v ∈ Vb} of Nb

vertices Vb (|Vb| = Nb) are sent to MUU for memory updating.
The updated vertex memory are sent to EU to generate vertex
embedding.
Memory Update Unit: In GRU, there are an Update Gate
(Equation (7)), a Reset Gate (Equation (8)), a Memory Gate
(Equation (9)) ,and a Merging Gate (Equation (10)). The
Update Gate, Reset Gate, and Memory Gate involve matrix
multiplication between the vertex messages (Equation (4), (5))
of Nb vertices and the weight matrices. For each one of the
three gates, a Multiply-Accumulate Array of size Sg × Sg is
implemented for efficient matrix multiplication. The four gates
are connected through the on-chip FIFO and their execution
is pipelined to achieve task-level parallelism.
Embedding Unit: The EU performs 1-layer message passing
with an Attention Module (AM) to calculate the attention
scores of the neighbors {α(u) : u ∈ Nmr(v)}, a Feature
Aggregation Module (FAM) to perform feature aggregation:
hv = aggregate{α(u)·su : u ∈ Nmr(v)∪{v}} and a Feature
Transformation Module (FTM) to perform feature transfor-
mation hv = transform(hv, sv,Wv). The FAM uses the
multiply-add tree-based design to aggregate information from
the neighbors. FTU performs multiplication of the aggregated
vertex memory vectors and the weight matrix which is also
implemented as a Multiply-Accumulate Array.
Updater: The function of Updater is to 1 receive the vertex

flag vid cmp

flag vid cmp

flag vid cmp

· · · · · · cmp

flag vid cmp

flag vid cmp

Vid2 Vid1

commit
pointer

write
pointer1

write
pointer2

Fig. 3. Updater using a fully-associative cache with rotating pointers (Ncu =
2).

information from the computation units, 2 write the vertex
information back to the external memory, 3 ensure the
chronological order of the updated vertex information, and
4 eliminate the redundant vertex updating. To ensure the

chronological order, the new edges are assigned to the CUs
in Round-Robin style. Similarly, the Updater receives the
updated vertex information from the CUs in the same Round-
Robin order. Figure 3 shows the diagram of the Updater. The
Updater is organized as a fully-associative cache with rotating
pointers. Each cache line stores one vertex information (mes-
sage/memory/neighbors), the index of the vertex, and a flag bit
that indicates whether the current cache line is valid. When
the Updater receives the vertex information from multiple CUs
concurrently, the chronological order of the multiple vertex
information is ensured by the relative position of the write
pointers. Each write pointer points to the write position of
a CU. The commit pointer scans multiple consecutive cache
lines at a time to check if a valid cache link can be sent back
to the external memory. When multiple new updated vertex
information are received by the Updater, their vertex indices
are compared with vertex index (vid) of each cache line. If
an uncommitted cache line has the same vertex index with
new vertex information, this uncommitted cache line will be
invalidated.
Multi-die Implementation: Advanced FPGA platforms are
usually integrated with multiple dies with limited number of
inter-die connections. The right side of the Figure 2 demon-
strates our multi-die implementation on Xilinx Alveo U200
board. Multiple memory channels are connected to the data
loader and updater. The hardware modules are distributed into
different dies (Super Logic Regions) with on-chip FIFOs as
the interconnection.

C. Dataflow Optimizations
We exploit three design principles to optimize the overall

performance: batching, task pipelining, and prefetching. Figure
4 depicts the detailed task scheduling.
Batching: In each time interval Tp, the computation unit
groups a set of edges to start the execution. This exploits data
parallelism within the CUs.

Time (Pipeline Period)0 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5

6-(1)
6-(2)
6-(3)
7-(1)

6-(4) 6-(5) 7-(2) 7-(3) 7-(4)

Load and Update

Compute

1 2 3 4 5

6-(1)
6-(2)
6-(3)
7-(1)

6-(4) 6-(5) 7-(2) 7-(3) 7-(4)

Load and Update

Compute

Current
Processing

Batch

Next
Processing

Batch

1. Load edges
2. Load neighbors, vertex memory, mail vector
3. Prefetch memories of neighbors
4. Update neighbors, vertex memory, mail vector
5. Update vertex embedding
6. Memory Update Unit: (1) Time encoding,
6. (2) Update gate, (3) Reset gate,
6. (4) Memory gate, (5)Merging Gate
7. Embedding Unit: (1) Attention, (2) Time encoding,
6. (3) Feature aggregation, (4) Feature transformation

Fig. 4. Task scheduling.

Task pipelining: The execution of consecutive processing
batches are fully pipelined to improve the overall throughput.
To facilitate the pipelined execution, (1) the computation
operations and the memory accesses are overlapped, (2) the
MMU and EU are pipelined, and (3) the individual hardware
modules within MUU and EU are pipelined.
Prefetching: GNN(·) requires the vertex memory of the
neighbors where loading from external memory leads to large
latency. Therefore, in the task scheduling (Feature 4), the
calculation of the attention score (7-(2)) in the EU is executed
after loading the timestamps of the neighbors. The EU uses the
attention score to obtain the indices of the required neighbors
and then prefetches the memory of the neighbors before the
MUU finishes execution. Note that the prefetching of vertex
memory is promoted by the proposed attention mechanism
(Equation 16) which does not require the updated vertex
memory to obtain the attention scores.

V. PERFORMANCE MODEL

In this section, we introduce our accurate performance
model which predicts the performance of the proposed model-
architecture co-design on a given FPGA. We define the fol-
lowing notations:
• Length of feature vector, message vector, memory, neigh-

bor list, and embedding of a vertex are ffeat, fmail, fmem,
mr, and femb. The size of each data is Zd bytes.

• Number of CUs: Ncu. Computation Parallelism of each
Gate in MUU: Sg×Sg . Computation parallelism of FAM:
SFAM. Computation parallelism of FTM: SFTM.

• Number of edges processed concurrently in a pipeline
stage (size of a processing batch): Nb (see Figure 4).

• Frequency of FPGA design: Ffreq

Due to our task scheduling (Figure 4), the execution of a
processing batch of Nb edges are divided into 9 stages. The
time period Tp of a pipeline stage is decided by the longest
stage Tmax

comp or the time of loading and storing data from/to
external memory TLS:

Tp = max(Tmax
comp, TLS) (18)

where

Tmax
comp = max({T6−(i) : i = 1, .., 5},

{T7−(i) : i = 1, .., 4})
(19)

For example, T6−(1) is the execution latency of the time
encoding stage in MUU as shown in Figure 4. Tmax

comp can be
approximated by the dominant terms

Tmax
comp ≈

1

Ffreq
·max(

3 ·Nb · fmail · fmem

Sg · Sg
,

3 ·Nb ·mr · (fmem + ffeat)

SFAM
,

3 ·Nb · (fmem + ffeat) · femb

SFTM
).

(20)

To drive an expression for TLS , we assume the external
memory bandwidth is α(l) ·BW , where α(l), (0 < α(l) 6 1)
is a factor specifying the effective bandwidth when the length
of burst data transaction is l [21] and BW is the peak memory
bandwidth between FPGA and external memory. Similarly,
TLS can be approximated as:

TLS ≈
6 ·Nb · fmail · Zd

α(fmail) ·BW
+

3 ·Nb · (2 +mr) · fmem · Zd

α(fmem) ·BW

+
3 ·Nb ·mr · ffeat · Zd

α(ffeat) ·BW
+

3 ·Nb · femb · Zd

α(femb) ·BW
(21)

When the batch size N is far larger than the processing
batch size Nb, the maximum throughput and latency can be
expressed as:

Maximum Throughput ≈ Nb

Tp

Latency ≈ (β − 1 + d N
Nb
e) · Tp

(22)

where β is the number of pipeline stages in task scheduling.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We evaluate the performance of our proposed model-
architecture co-design with the widely-studied temporal link
prediction task on three datasets – Wikipedia [12], Reddit [12],
and GDELT [9]. For the GDELT dataset, we use the pre-
trained 200-dimensional node embedding from SeDyT [10]
as the input node features. These three datasets cover the
dynamic graphs with edge features (Wikipedia and Reddit)
and with node features (GDELT). We implement our hardware
accelerators on two FPGAs. Table III shows the specifications
of the hardware platforms used in this work. We train three
different sizes of the simplified models NP(L/M/S) with 6/4/2
temporal neighbors as the neighbor pruning budgets. We set

TABLE II
ACCURACY, COMPUTATION COMPLEXITY, LATENCY, AND THROUGHPUT (WITH A SINGLE CPU THREAD) OF THE ORIGINAL AND OPTIMIZED MODELS.

THE SAT ROW DENOTES OUR SIMPLIFIED ATTENTION MECHANISM. THE LUT ROW DENOTES LUT-BASED TIME ENCODER. THE NP(L/M/S) ROWS
DENOTES THE NEIGHBOR PRUNING WITH 6/4/2 NEIGHBORS. WE SHOW THE MODEL WITH ACCUMULATED OPTIMIZATIONS ROW BY ROW.

Input Dimensions kMEM kMAC 1 CPU Thread
Model |vi| |eij | |N (v)| # % #(GRU) #(GNN) #(Tot.) %(Tot.) AP (difference) Thpt. (kE/s) Speedup

W
ik

ip
ed

ia

Baseline 0 172 10 5.7 100% 48.4 703.5 751.9 100% 0.9900 (-0.0000) 0.85 1×
+SAT 0 172 10 5.7 100% 48.4 351.1 399.5 53.1% 0.9821 (-0.0079) 1.10 1.29×
+LUT 0 172 10 5.7 100% 38.3 240.0 278.3 37.0% 0.9891 (-0.0009) 1.12 1.32×

+NP(L) 0 172 6 3.8 66.7% 38.3 156.4 194.5 25.9% 0.9891 (-0.0009) 1.71 2.01×
+NP(M) 0 172 4 2.9 50.9% 38.3 114.6 152.9 20.3% 0.9887 (-0.0013) 2.71 3.19×
+NP(S) 0 172 2 1.9 33.3% 38.3 72.8 111.1 14.8% 0.9878 (-0.0022) 3.22 3.79×

R
ed

di
t

Baseline 0 172 10 5.8 100% 48.4 703.5 751.9 100% 0.9978 (-0.0000) 0.92 1×
+SAT 0 172 10 5.8 100% 48.4 351.1 399.5 53.1% 0.9967 (-0.0011) 1.22 1.33×
+LUT 0 172 10 5.8 100% 38.3 240.0 278.3 37.0% 0.9978 (-0.0000) 1.21 1.32×

+NP(L) 0 172 6 3.9 67.2% 38.3 156.4 194.5 25.9% 0.9971 (-0.0007) 1.51 1.64×
+NP(M) 0 172 4 3.0 51.7% 38.3 114.6 152.9 20.3% 0.9971 (-0.0007) 1.93 2.10×
+NP(S) 0 172 2 2.0 34.4% 38.3 72.8 111.1 14.8% 0.9948 (-0.0030) 2.21 2.40×

G
D

E
LT

Baseline 200 0 10 5.1 100% 51.2 733.8 785.0 100% 0.9623 (-0.0000) 1.29 1×
+SAT 200 0 10 5.1 100% 51.2 371.3 422.5 53.8% 0.9612 (-0.0011) 1.83 1.42×
+LUT 200 0 10 5.1 100% 41.1 260.2 301.3 38.4% 0.9605 (-0.0018) 1.85 1.43×

+NP(L) 200 0 6 3.4 66.7% 41.1 176.6 217.7 27.7% 0.9598 (-0.0025) 3.01 2.33×
+NP(M) 200 0 4 2.5 49.1% 41.1 134.8 175.9 22.4% 0.9596 (-0.0027) 3.62 2.81×
+NP(S) 200 0 2 1.7 31.5% 41.4 93.0 134.1 17.1% 0.9590 (-0.0033) 4.43 3.43×

the temperature T in the knowledge distillation loss to 1 during
training. For the rest of the hyper-parameters, we follow the
training setup in the baseline code [13].

A. FPGA Implementation Results

We implement our design on two state-of-the-art FPGA
platforms – Xilinx Alveo U200 and Xilinx ZCU1042. The
accelerators are developed using Xilinx High-level Synthesis
(HLS). HLS is a pragma-directive programming language that
allows user to develop the accelerator design using C/C++.
Alveo U200 is a cloud-based FPGA board while ZCU104 is
an embedded FPGA board with a built-in ARM processor.
We use ZCU104 to demonstrate that the proposed design can
be deployed on light-weight embedded platforms, which is
useful for applications on edge devices such as Internet of
Things (IoTs). We set the commit pointer in the Updater to
scan 3 consecutive cache lines each cycle. A BRAM has the
size of 36K bits and an URAM has the size of 288K bits
on both FPGAs. With the IEEE float32 data format, each
multiplier consumes 3 DSPs while each accumulator consumes

TABLE III
SPECIFICATIONS OF VARIOUS HARDWARE PLATFORMS

Hardware # of dies
/sockets/boards

Computation
Resources Per Die

External Memory
Bandwidth

Xilinx
Alveo U200 3 394K LUTs, 2280 DSPs

720 BRAMs, 320 URAMs 77 GB/s DDR4

Xilinx
ZCU104 1 230K LUTs, 1728 DSPs

312 BRAMs, 96 URAMs 19.2 GB/s DDR4

Dual Intel Xeon
Gold 5120 CPU
(CPU baseline)

2 14 Cores, 28 Threads
2.20 GHz 89 GB/s DDR4

Nvidia Titan X
(GPU baseline) 1 3840 CUDA cores

1532 MHz 547 GB/s HBM

2https://github.com/zjjzby/TGNN-FPGA-IPDPS2022

2 DSPs. The design configurations and resource utilization of
the accelerators on the two FPGAs are shown in Table IV. We
use the Xilinx Vitis 2020.2 for hardware synthesis and place
& route. The reported resource utilization and frequency are
obtained after place & route.

B. Evaluation Results

Effect of Model Optimization: To compare the performance
of our proposed model-architecture co-design, we first evaluate
the effect of our simplified models on a single CPU core. Table
II shows the reduction in the number of operations and the
loss in Average Precision (AP) of the simplified models. Our
neighbor pruning strategy achieves near-linear reduction in the
memory accesses and computation with respect to the number
of neighbors left. The simplified attention mechanism greatly
reduces half of the total computation while the LUT-based
time encoder reduces another 15%. On a single CPU core,
our simplified model achieves an average of 3.21× speedup
in throughput with less than 0.0033 drop in AP. Note that our
LUT-based time encoder does not show evident improvement
due to the hardware limitation that CPU cannot store the LUT
on-chip for fast access.
Cross-Platform Comparison: We compare the performance
of our FPGA accelerators with the same optimized code
as in Section II-B on CPU (32 threads) and GPU. On the
FPGA platforms, we run three models with different sizes
NP(L/M/S). Due to the limited size of external memory,

TABLE IV
DESIGN CONFIGURATIONS AND RESOURCE UTILIZATION

Design configurations Resource utilization Freq.
Ncu S2

g SFAM SFTM LUT DSP BRAM URAM (MHz)

U200 2 82 16 8× 8 563k 2512 1415 448 250
ZCU104 1 42 8 4× 4 125k 744 240 0 125

https://github.com/zjjzby/TGNN-FPGA-IPDPS2022

0 2,000 4,000
100

101

102

103

Batch size (#edges)

W
ik

ip
ed

ia
L

at
en

cy
(m

s)

0 2,000 4,000

100

101

102

Batch size (#edges)

T
hr

ou
gh

pu
t

(k
E

/s
)

0 2 4

0

10

20

30

Time (days)

L
at

en
cy

(m
s)

0 2,000 4,000
100

101

102

103

Batch size (#edges)

R
ed

di
t

L
at

en
cy

(m
s)

0 2,000 4,000

100

101

102

Batch size (#edges)
T

hr
ou

gh
pu

t
(k

E
/s

)
0 2 4

0

20

40

60

Time (days)

L
at

en
cy

(m
s)

0 2,000 4,000
100

101

102

103

Batch size (#edges)

G
D

E
LT

L
at

en
cy

(m
s)

0 2,000 4,000

100

101

102

Batch size (#edges)

T
hr

ou
gh

pu
t

(k
E

/s
)

0 2 4

0

100

200

300

Time (days)

L
at

en
cy

(m
s)

NP(L) NP(M) NP(S) NP(L) NP(M) NP(S)
CPU GPU U200 ZCU104

Fig. 5. Performance of our hardware accelerator on two FPGAs compared with the baseline on CPU and GPU. The left two plots show the latency and
throughput (in log scale) under various batch sizes. The right plots show the real-time inference latency on the test set.

we only test the performance of the Wikipedia dataset on
Xilinx ZCU104. Figure 5 shows the latency and throughput
of the baselines and our hardware accelerators. We show the
latency and throughput under various batch sizes (the first
two columns). Our accelerator on Xilinx Alveo U200 achieves
more than 13.9/15.8/17.9× speedup compared with CPU and
more than 4.6/5.2/6.0× speedup compared with GPU using
the NP(L/M/S) models. Note that the accuracy of our simpli-
fied models are the same on FPGAs as on CPU (see Table
II). The obtained speedup on FPGAs is due to our model-
architecture co-design that results in low complexity and takes
advantages of the FPGA features (Section III). To simulate
the performance when deployed in production environments,
we also evaluate the real-time latency of inferencing on the
upcoming graph signals every 15 minutes on the three datasets.
We perform inference on batches of new edges in every 15
minutes and measure the latency of each batch. On Xilinx
ZCU104, our hardware accelerators achieve similar latency as
GPU but with larger fluctuation due to the limited computing
resources. On Xilinx Alveo U200, we achieve remarkable
speedup (more than 3.66×) in latency compared with GPU.
Our smallest model NP(S) has less than 10ms latency on all
three datasets which meets the requirements of most real-time
applications.

Evaluation of Performance Model: We evaluate our per-
formance model by comparing the predicted latency and
throughput with the experimental results. On average, the

0 2,000 4,000
10−1

101

103

Batch size (#edges)

L
at

en
cy

(m
s)

0 2,000 4,000

101

102

Batch size (#edges)

T
hr

ou
gh

pu
t

(k
E

/s
)

Actual Predicted
U200

ZCU104

Actual Predicted
U200

ZCU104

Fig. 6. Predicted and actual performance on two FPGAs with the NP(M)
model on the Wikipedia dataset.

prediction error ranges from 9.9% to 12.8%. Figure 6 shows
the prediction error using our performance model on the
Wikipedia dataset. We attribute the prediction error to two
reasons: (1) the fine-grained hardware pipelines generated by
the Xilinx Vitis have some flushing & draining cycles that are
not included in the performance model. This is hard to estimate
since the extra cycles are usually decided by the platforms and
the version of the compiler. (2) The refreshing behavior of the
DDR memory is hard to predict which leads to periodic extra
memory latency.
Comparison with State-of-the-Art Method: Figure 7 shows
the accuracy-latency curve of our model-architecture co-
design, our baseline method TGN [13], and latency-targeted
TGNN APAN [17]. We show the accuracy and latency of TGN
and APAN on CPU and GPU since there is no dedicated
hardware accelerator designed for these methods. Our co-

643216842
98.4

98.6

98.8

99

(1×)(2×)(4×)(8×)(16×)(32×)

Latency (ms)

A
P

(%
)

Base. CPU GPU
TGN

APAN

Ours U200 ZCU104
NP(L)
NP(M)
NP(S)

Fig. 7. Accuracy and latency on the Wikipedia dataset (batch size 200).

design achieves significantly higher accuracy than APAN
while maintaining similar latency using ZCU104 with CPU
and around 2× improvement in latency using U200 with GPU.

VII. RELATED WORKS

The acceleration of GNN on static graphs has been exten-
sively studied before. For example, researchers have proposed
algorithm optimizations such as pruning [1], [2] and com-
pression [3] techniques to reduce the computation complexity.
However, the only work on accelerating TGNNs that we
are aware of is APAN [17] which reduces the latency by
asynchronous processing. On the other hand, there are many
hardware accelerators proposed for GNNs on static graphs.
HyGCN proposed [5] hybrid accelerators for GNN with a
self-adaptive sliding window technique to reduce the memory
traffic. GraphACT [4] proposed an FPGA accelerator for sub-
graph sampling-based GNN training. AWB-GCN [6] proposed
a dynamic re-balancing technique to resolve the workload in-
balance in GNN inference. Nevertheless, the previous works
exploit massive data parallelism and task parallelism on static
graphs which are not designed to process the vertex mem-
ory updating or deal with temporal dependency on dynamic
graphs. To the best of our knowledge, this is the first work to
optimize the TGNN inference through comprehensive model-
architecture co-design.

VIII. CONCLUSION

In this work, we proposed a model-architecture co-design
for temporal GNN on FPGA platforms. We defined per-
formance metrics and conducted a case study to identify
the bottlenecks in the existing TGNN inference methods.
We designed a light-weight and hardware-friendly TGNN
inference algorithm which has low computation complexity
and external memory accesses which takes advantage of the
programmable on-chip memory and massive data parallelism
of FPGAs. We mapped the optimized models to principled
hardware architectures and implemented the corresponding
hardware accelerators on two FPGAs. Our co-design on FPGA
platforms achieved significantly better performance than state-
of-the-art methods on CPU and GPU on real-world datasets.

REFERENCES

[1] H. Zhou, A. Srivastava, H. Zeng, R. Kannan, and V. Prasanna, “Acceler-
ating large scale real-time gnn inference using channel pruning,” Proc.
VLDB Endow., 2021.

[2] X. Xu, W. Feng, Y. Jiang, X. Xie, Z. Sun, and Z.-H. Deng, “Dynamically
pruned message passing networks for large-scale knowledge graph
reasoning,” in ICLR, 2020.

[3] J. Wang, Y. Wang, Z. Yang, L. Yang, and Y. Guo, “Bi-gcn: Binary graph
convolutional network,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

[4] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-
fpga heterogeneous platforms,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020.

[5] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan, and
Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020.

[6] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt et al., “Awb-gcn: A graph convolutional network
accelerator with runtime workload rebalancing,” in IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2020.

[7] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in ACM SIGKDD International Conference on
Knowledge Discovery Data Mining (KDD), 2018.

[8] J. Zhang, X. Shi, S. Zhao, and I. King, “Star-gcn: Stacked and recon-
structed graph convolutional networks for recommender systems,” in
IJCAI, 2019.

[9] W. Jin, M. Qu, X. Jin, and X. Ren, “Recurrent event network: Au-
toregressive structure inference over temporal knowledge graphs,” in
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

[10] H. Zhou, J. Orme-Rogers, R. Kannan, and V. Prasanna, “Sedyt: A gen-
eral framework for multi-step event forecasting via sequence modeling
on dynamic entity embeddings,” in ACM International Conference on
Information and Knowledge Management (CIKM), 2021.

[11] A. Li, Z. Qin, R. Liu, Y. Yang, and D. Li, “Spam review detection
with graph convolutional networks,” ACM International Conference on
Information and Knowledge Management (CIKM), 2019.

[12] da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan
achan, “Inductive representation learning on temporal graphs,” in Inter-
national Conference on Learning Representations, 2020.

[13] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
in ICML 2020 Workshop on Graph Representation Learning, 2020.

[14] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,”
in International Conference on Web Search and Data Mining, 2020.

[15] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. B. Schardl, and C. E. Leiserson, “EvolveGCN: Evolving
graph convolutional networks for dynamic graphs,” in AAAI Conference
on Artificial Intelligence, 2020.

[16] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” in International Conference on
Learning Representations, 2019.

[17] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui,
Y. Yang, B. Sun et al., “Apan: Asynchronous propagation attention
network for real-time temporal graph embedding,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
2628–2638.

[18] Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, and P. Li, “Inductive
representation learning in temporal networks via causal anonymous
walks,” in International Conference on Learning Representations, 2021.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in International
Conference on Neural Information Processing Systems, 2017.

[20] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” stat, p. 9, 2015.

[21] A. Lu, Z. Fang, W. Liu, and L. Shannon, “Demystifying the mem-
ory system of modern datacenter fpgas for software programmers
through microbenchmarking,” in ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 2021.

	I Introduction
	II Temporal Graph Neural Networks
	II-A Inference Performance Metrics
	II-B Case Study: Memory-Based TGNN Inference

	III Model-Architecture Co-Design
	III-A Simplified Temporal Attention
	III-B Temporal Neighbor Pruning
	III-C Time Encoding Look-Up-Table

	IV Hardware Mapping and Optimizations
	IV-A Data Structure
	IV-B Hardware Modules
	IV-C Dataflow Optimizations

	V Performance Model
	VI Implementation and Experimental Results
	VI-A FPGA Implementation Results
	VI-B Evaluation Results

	VII Related Works
	VIII Conclusion
	References

