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Abstract—The Graph Convolutional Network (GCN) model
and its variants are powerful graph embedding tools for fa-
cilitating classification and clustering on graphs. However, a
major challenge is to reduce the complexity of layered GCNs
and make them parallelizable and scalable on very large graphs
— state-of the art techniques are unable to achieve scalabil-
ity without losing accuracy and efficiency. In this paper, we
propose novel parallelization techniques for graph sampling-
based GCNs that achieve superior scalable performance on very
large graphs without compromising accuracy. Specifically, our
GCN guarantees work-efficient training and produces order of
magnitude savings in computation and communication. To scale
GCN training on tightly-coupled shared memory systems, we
develop parallelization strategies for the key steps in training: For
the graph sampling step, we exploit parallelism within and across
multiple sampling instances, and devise an efficient data structure
for concurrent accesses that provides theoretical guarantee of
near-linear speedup with number of processing units. For the
feature propagation step within the sampled graph, we improve
cache utilization and reduce DRAM communication by data
partitioning. We prove that our partitioning strategy is a 2-
approximation for minimizing the communication time compared
to the optimal strategy. We demonstrate that our parallel graph
embedding outperforms state-of-the-art methods in scalability
(with respect to number of processors, graph size and GCN
model size), efficiency and accuracy on several large datasets.
On a 40-core Xeon platform, our parallel training achieves 64×
speedup (with AVX) in the sampling step and 25× speedup in the
feature propagation step, compared to the serial implementation,
resulting in a net speedup of 21×. Our scalable algorithm enables
deeper GCN, as demonstrated by 1306× speedup on a 3-layer
GCN compared to Tensorflow implementation of state-of-the-art.

Index Terms—Graph Embedding; Graph Convolutional Net-
works; Subgraph Sampling;

I. INTRODUCTION

Graph embedding is a powerful dimensionality reduction
technique. Taking an unstructured, attributed graph as input,
the embedding process outputs structured vectors which cap-
ture information of the original graph. Embedding facilitates
data mining on graphs, and thus is essential in a wide range
of tasks such as content recommendation and protein function
prediction. Among the various embedding techniques, Graph
Convolutional Network (GCN) [1] and its variants [2], [3]
have attained much attention recently. GCN based approaches
produce accurate and robust results without the need of manual
feature selection.

In order to scale GCN to large graphs, the typical approach
is to decompose training into “mini-batches” and attempt to

∗Equal contribution

parallelize mini-batch training by sampling on GCN layers
(layer sampling). The batched GCN [1] and its successor
GraphSAGE [2] sample the inter-layer edge connections. Their
approaches preserve the training accuracy of the original
GCN model, but their parallelization strategy is not work-
efficient. The amount of redundant computation increases by
a factor of node degree for every additional layer of GCN. To
alleviate such high redundancy due to “neighbor explosion”
in deeper layers, FastGCN [3] proposes to sample the nodes
of GCN layers instead of the edge connections. Although
this approach is empirically faster than [1], [2], it does not
guarantee work-efficiency, incurs accuracy loss and requires
expensive preprocessing which affects scaling.

Due to the layer sampling design philosophy, it is difficult
for state-of-the-art methods [1]–[3] to simultaneously achieve
accuracy, efficiency and scalability. In this work, we propose
a new graph sampling-based GCN which achieves superior
performance on a variety of large graphs. Our novelty lies in
designing scalable GCN model based on parallelized graph
sampling (rather than layer sampling), without compromising
accuracy or efficiency. We achieve scalability and performance
by 1) Developing a novel data structure that enables efficient
parallel subgraph sampling through fast parallel updates to
degree distributions; 2) Developing an optimized parallel im-
plementation of intra-subgraph feature propagation and weight
updates — specifically a cache-efficient partitioning scheme
that reduces DRAM communication, resulting in optimized
memory performance. We achieve work-efficiency by avoiding
neighbor explosion, as each layer of our complete GCN
consists of only small set of nodes. Finally, since our sampled
subgraphs preserve connectivity characteristics of the original
training graph, we demonstrate that accuracy also remains
unaffected. The main contributions of this paper are:

• We propose parallel training algorithm for a novel graph
sampling-based GCN model, where:
– Accuracy is achieved due to connectivity-preserving

graph sampling techniques.
– Efficiency is optimal since “neighbor explosion” in

layer sampling based GCNs is avoided.
– Scalability is achieved with respect to number of pro-

cessing cores, graph size and GCN depth by extracting
parallelism at various key steps.

• We propose a novel data structure that accelerates degree
distribution based sampling through fast incremental par-
allel updates. Our method has a near-linear scalability
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Fig. 1: Illustration on layer sampling and graph sampling based GCN design.

guarantee with respect to number of processing units.
• We parallelize the key training step of subgraph feature

propagation. Using intelligent partitioning on the feature
dimension, we optimize DRAM and cache performance
and scale training to large number of cores.

• We perform thorough evaluation on a 40-core Xeon
server. Compared with serial implementation, we achieve
21× overall training time speedup. Compared with other
GCN based methods, our parallel (serial) implementation
achieves up to 37.4× (7.8×) training time reduction when
reaching the same accuracy.

• We demonstrate that our implementation can enable
deeper GCN. We obtain 1306× speedup for 3-layer GCN
compared to Tensorflow implementation of state-of-the-
art on a 40-core machine.

II. BACKGROUND AND RELATED WORK

Graph Convolutional Network (GCN) along with its varia-
tions is the state-of-the-art embedding method, widely shown
to yield highly accurate and robust results. A GCN is a kind of
multi-layer neural network, and it performs vertex embedding
as follows. An input graph with vertex attributes (or features)
is fed into the GCN. The GCN propagates the features layer
by layer, where each layer performs feature extraction based
on the learned weight matrices and the input graph topology.
The last GCN layer outputs embedding vectors for the vertices
of the input graph. Essentially, both the input graph attributes
and topology are “embedded” into the output vectors.

Figure 1 shows the network structure of GCNs. We use su-
perscript “(`)” to denote GCN layer-` parameters. An L-layer
GCN upon the input graph G(V, E) is constructed as follows.
Each layer consists of |V| nodes — layer node v

(`)
i ∈ V(`)

corresponds to the graph vertex vi ∈ V . Edges in GCN connect
nodes in adjacent layers based on the input graph edges.
Specifically, the collection of edges between layers `−1 and `
are defined by E(`) ∈

{ (
v
(`−1)
i , v

(`)
j

) ∣∣∣ (vi, vj) ∈ E }. Note

that V(`−1), V(`) and E(`) form a bipartite graph represented by
bi-adjacency matrix A(`). Each GCN node v(`)i is associated
with a feature vector h

(`)
i ∈ Rf(`)

of length f (`), and let

H(`) ∈ R|V|×f(`)

be the feature matrix. Note that H(0)

consists of vertex attributes of input graph G.
The propagation of h(`)

i from layer `−1 to ` is processed by
two weight matrices: W (`)

self and W
(`)
neigh. Both weight matrices

are learned during training. The forward propagation of GCN
from layer `− 1 to ` involves two major steps:

1) Feature aggregation: Each v
(`)
i collects features of its

layer `−1 neighbors,
{
h
(`−1)
j

∣∣∣ (v(`−1)j , v
(`)
i

)
∈ E(`)

}
,

and calculates the mean of neighbor features.
2) Weight application: The mean-aggregated neighbor fea-

tures are multiplied by W
(`)
neigh. The self-features h

(`−1)
i

from layer `− 1 are also multiplied by the W
(`)
self .

The features after applying weights are sent to layer `. With
an optional neighbor-self feature concatenation and non-linear
activation, we obtain the next layer features H(`).

To train GCNs on large scale graphs, it is essential to
do mini-batch training, where number of vertices involved
in each weight update is much smaller than the training
graph size. Batched GCN [1], GraphSAGE [2] and FastGCN
[3] incorporate various GCN layer sampling techniques to
construct mini-batches. Upper part of Figure 1 abstracts the
edge based layer sampling technique [2] and node based layer
sampling technique [3], where subscript LS dentes Layer
Sampling. Since layer sampling requires each node in layer
` to select multiple neighbor nodes in layer `− 1, the deeper
the layer sampler goes, the more nodes will be sampled (i.e.,∣∣∣V(`)

LS

∣∣∣ becomes larger when ` gets smaller). We refer to this
phenomenon as “neighbor explosion”. On the other hand, [3]
proposes a node based layer sampler. It samples in a two
phased fashion. The first phase samples nodes of all the L
layers based on a pre-calculated probability distribution, where
the samplers of each layer are independent. The second phase
re-constructs the inter-layer edges to connect the sampled
nodes. Empirically, this method mitigates the “neighbor ex-
plosion” problem at the cost of accuracy loss and potentially
expensive pre-processing (calculating probability distribution).
Deeper layers may still require larger sampling population to
avoid overly sparse inter-layer connection.



III. GRAPH SAMPLING-BASED GCN MODEL

We present a novel graph sampling-based GCN model. Our
parallel mini-batch training outperforms state-of-the-art GCN
in accuracy, efficiency and scalability, simultaneously. We
present the design of the graph sampling-based GCN (Section
III-A), and analyze the advantages in efficiency (Section III-B)
and accuracy (Section III-C). We then present optimizations
to scale training on parallel machines (Sections IV, V).

A. Design of the Model

As illustrated by the lower part of Figure 1, the graph
sampling-based approach does not construct a GCN directly
on the original input graph G. Instead, for each iteration of
weight update during training, we first sample a small induced
subgraph Gsub(Vsub, Esub) from G(V, E). We then construct a
complete GCN on Gsub. The forward and backward propa-
gation are both on this small yet complete GCN. Algorithm
1 presents the details of our approach, where subscript GS
denotes Graph Sampling. The key distinction from traditional
GCNs is that the computations (lines 5-13) are performed on
nodes of the sampled graph instead of the sampled layer nodes,
thus requiring much less computation in training (Section
III-B). We also discuss the requirement for the SAMPLEG
function (line 3) in Section III-B, and present a representative
sampling algorithm that leads to high accuracy.

Algorithm 1 Training algorithm for mini-batched GCN using
graph sampling techniques

Input: Training graph G(V, E ,H(0)); Labels L

Output: Trained weights
{
W

(`)
self ,W

(`)
neigh

∣∣∣ 1 ≤ ` ≤ L }
1: while not terminate do . Iterate over mini-batches
2: Gsub(Vsub, Esub)← SAMPLEG

(
G(V, E)

)
3:

{
V(`)

GS

}
,
{
E(`)GS

}
← GCN construction on Gsub

4:
{
A

(`)
GS

}
← bi-adj matrix of

{ (
V(`−1)

GS ,V(`)
GS , E

(`)
GS

) }
5: H

(0)
GS ←H(0)

[
V(0)

GS

]
6: for ` = 1 to L do . Forward propagation

7: Hneigh ←
(
A

(`)
GS

)T
·H(`−1)

GS ·W (`)
neigh

8: Hself ←H
(`−1)
GS ·W (`)

self

9: H
(`)
GS ← σ

(
Hneigh|Hself

)
. Concat & activation

10: . Label prediction by embedding; SGD weight update
11: X ← PREDICT

(
H

(L)
GS

)
12: C ← LOSS

(
X,L

[
V(L)

GS

])
13: ADAM

(
C,X,

{
H

(`)
GS

}
,
{
W

(`)
neigh

}
,
{
W

(`)
self

})
14: return

{
W

(`)
self

}
,
{
W

(`)
neigh

}

B. Complexity of Graph Sampling-Based GCN

We analyze the computation complexity of our graph-
sampling based GCN and show that it achieves work-
optimality. In the following analysis, we do not consider

the sampling overhead, and we only focus on the forward
propagation, since backward propagation has identical com-
putation characteristics as forward propagation. Later, we also
experimentally demonstrate that our technique is significantly
faster even with the sampling step included (see Section VI).

The main operations to propagate a batch (consisting of
vertices of the sampled graph) forward by one layer are:

• Feature aggregation: Each feature vector from layer-`
propagates via edges in E(`)GS to be aggregated in the next
layer, leading to O

(∣∣∣E(`)GS

∣∣∣ · f (`)) operations.
• Weight application: Each vertex multiplies its feature with

the weight, leading to O
(∣∣∣V(`)

GS

∣∣∣ · f (`−1)f (`)) operations.

Complexity of L-layer forward propagation in one batch is:

O

(
L−1∑
`=0

( ∣∣∣E(`)GS

∣∣∣ · f (`) + ∣∣∣V(`+1)
GS

∣∣∣ · f (`) · f (`+1)
))

(1)

The GCN constructed on our sampled subgraph has the
same set of nodes in all layers

∣∣∣V(`)
GS

∣∣∣ = |Vsub|. If the
average degree of the subgraph is dGS, then number of edges
between each layer of GCN E(`)GS = dGS|Vsub|. This results
in the complexity of a batch (subgraph) of our algorithm to
O (L · |Vsub| · f · (f + dGS)). If we define an epoch as one full
traversal of all training vertices (i.e., processing of |V|/ |Vsub|
batches), complexity of an epoch is O (L · |V| · f · (f + dGS))

Comparison Against Other GCN Models: In [2], a certain
number dLS of neighbors are selected from the next layer for
each vertex in the current layer. It can be shown that depending
on the batch size the complexity falls between:

Case 1 [Small batch size]: O
(
dLLS · |V| · f · (f + dLS)

)
.

Case 2 [Large batch size] O (L · |V| · f · (f + dLS)).
We observe that when the batch size is much smaller than

the training graph size, layer sampling technique by [2] results
in high training complexity (it grows exponentially with GCN
depth, although, often small values of L are used). This is
the “neighbor explosion” phenomenon, which is effectively
due to redundant computations for small batches, making
the mini-batch training of [2] very inefficient. On the other
hand, when the batch size of [2] becomes comparable to the
training graph size, the training complexity grows linearly with
GCN depth and training graph size. However, this resolution
of the “neighbor explosion” problem comes at the cost of
slow convergence and low accuracy [4]. Thus, such training
configuration is not applicable to large scale graphs.

Our graph-sampling based GCN technique leads to a par-
allel training algorithm whose complexity is linear in GCN
depth and training graph size. The work-efficiency of our GCN
model is guaranteed by design, since the GCN in this case
is always complete. In addition, by choosing proper graph
sampling algorithms, we can construct subgraphs whose sizes
are small, and do not need to be grown with the training graph
(as shown in Section VI). Thus, the graph sampling-based



GCN model achieves work-optimality without any sacrifice
in accuracy due to large batch sizes.

C. Accuracy of Graph Sampling-Based GCN

By design, layer-based sampling methods assume that a
subset of neighbors of a given node is sufficient to learn
its representation. We achieve the same goal by sampling
the graph itself. If the sampling algorithm constructs enough
number of representative subgraphs Gsub, our graph sampling-
based GCN model should absorb all the information in G, and
generate accurate embeddings. More specifically, as discussed
in Section II, the output vectors “embed” the input graph
topology as well as the vertex attributes. A good graph
sampling algorithm, thus, should guarantee:

1) Sampled subgraphs preserve the connectivity characteris-
tics in the training graph.

2) Each vertex in the training graph has some non-negligible
probability to be sampled;

For the first requirement, while “connectivity” may have
several definitions, subgraphs output by the well-known fron-
tier sampling algorithm [5] approximate the original graph
with respect to multiple connectivity measures. In addition, the
frontier sampling algorithm also satisfies the second require-
ment. At the beginning of the sampling phase, the sampler
picks some initial root vertices uniformly at random from
the original graph. These root vertices constitute a significant
portion of the sampled graph vertices. Thus, over large enough
number of sampling iterations, all input vertex attributes of the
training vertices will be covered by the sampler.

For the above reasons, we use frontier sampling algorithm
as the sampler for our GCN model. We also perform detailed
accuracy evaluation on our GCN model using the frontier sam-
pling algorithm. The results in Section VI prove empirically
that our design does not incur any accuracy loss.

IV. PARALLEL GRAPH SAMPLING ALGORITHM

A. Graph Sampling Algorithm

The frontier sampling algorithm proceeds as follows.
Throughout the sampling process, the sampler maintains a
constant size frontier set FS consisting of m vertices in G.
In each iteration, the sampler randomly pops out a vertex v in
FS using a degree based probability distribution, and replaces
v in FS with a randomly selected neighbor of v. The popped
out v is added to the vertices Vsub of Gsub. The sampler repeats
the above update process on the frontier set FS, until the size
of Vsub reaches the desired budget n. Algorithm 2 shows the
details. According to [5], a good empirical value of m is 1000.

In our experiments sequential implementation, we notice
that about half of the time is spent in sampling phase.
Therefore, there is a need to parallelize the sampling step.
The challenges to parallelization are: 1) While sampling
from a discrete distribution is a well-researched problem, we
are focused on fast parallel sampling of a dynamic degree
distribution (changes with addition/deletion of new vertex to
the frontier). Existing well-known methods for fast sampling
such as aliasing (which can output a sample in O(1) time with

Algorithm 2 Frontier sampling algorithm

Input: Original graph G(V, E); Frontier size m; Budget for
number of sampled vertices n

Output: Induced subgraph Gsub(Vsub, Esub)
1: FS← m vertices selected uniformly at random from V
2: Vsub ← { vi | vi ∈ FS }
3: for i = 0 to n−m− 1 do
4: Select u ∈ FS with probability deg(u)/

∑
v∈FS deg(v)

5: Select u′ from { w | (u,w) ∈ E } uniformly at random
6: FS←

(
FS \ { u }

)
∪ { u′ }

7: Vsub ← Vsub ∪ { u }
8: Gsub ← Subgraph of G induced by Vsub
9: return Gsub(Vsub, Esub)

linear processing) cannot be modified easily for this problem.
It is non-trivial to select a vertex from evolving FS with
low complexity. A straightforward implementation requires
O(m · n) work to sample a single Gsub, which is expensive
given m = 1000. 2) The sampler is inherently sequential. The
vertices in the frontier set should be popped out one at a time
to guarantee the quality of the sampled graph Gsub.

To address the above challenges, we first propose a novel
data structure that lowers the complexity of frontier sampler
and allows thread-safe parallelization (Section IV-B). We then
propose a training scheduler that exploits parallelization within
and across sampler instances (Section IV-C).

B. Dashboard Based Implementation

Since vertices in the frontier set is replaced only one at
a time, an efficient implementation should allow incremental
update of the probability distribution. We propose a “Dash-
board” table to store the status of current and historical frontier
vertices (a vertex becomes a historical frontier vertex after
it gets popped out of the frontier set). The vertex to be
popped out next is selected by probing the Dashboard using
randomly generated indices. The data structure ensures that
the probability distribution for picking vertices is updated
quickly and incrementally. Below we formally describe the
data structure and operations in the Dashboard-based sampler.
The implementation involves two arrays:

• Dashboard DB ∈ R3×(η·m·d): A table maintaining the
status and probabilities of current and historical frontier
vertices. An entry corresponding to vi has 3 slots. The
first slot is i; the second slot is an offset value, helping
with the invalidation of all of the vi related entries when
vi is popped out; the third slot is a value k, if vi is the
kth vertex added into DB. Parameter η is explained later.

• Index array IA ∈ R2×(η·m·d+1): An auxiliary array to
help cleanup DB when the Dashboard overflows. The jth

entry in IA has 2 slots, the first slot records the starting
index of the DB entries corresponding to v, where v is the
jth vertex added into DB. The second slot is a Boolean
flag, which is True when v is a current frontier vertex,
and False when v is a historical frontier vertex.



Since the probability of popping out a vertex in frontier
is proportional to its degree, we allocate deg(vi) continuous
entries in DB, for each vi currently in the frontier set. This
way, the sampler only needs to probe DB uniformly at random
to achieve line 4 of Algorithm 2. Thus, DB should contain at
least m ·d entries, where d is the average degree of vertices in
frontier. For ease of incremental update of DB we append
the entries for the new vertex and invalidate the entry of
popped out vertex, instead of replacing one with the other.
To accommodate this we introduce an enlargement factor η
(η > 1), and set the length of DB to be η · m · d (as
an approximation, we set d as the average degree of the
training graph G). As the sampling proceeds, eventually, all
of the η · m · d entries in DB may be filled up by current
and historical frontier vertices. When this happens, we free
up the space occupied by historical frontier vertices, and
resume the sampler. Although “cleanup” of the Dashboard is
expensive, due to the factor η, such scenario does not happen
frequently (see complexity analysis in Section IV-C). Using
the information in IA, the cleanup phase does not need to
traverse all of the η ·m ·d entries in DB to locate the space to
be freed. When DB is full, the entries in DB can correspond
to at most η ·m · d vertices. Thus, we safely set the capacity
of IA to be η ·m ·d + 1. Slot 1 of the last entry of IA contains
the current number of used DB entries.

C. Intra- and Inter-Subgraph Parallelization

Since our subgraph-based GCN approach requires indepen-
dently sampling multiple subgraphs, we can easily sample
different subgraphs on different processors in parallel. Also,
we can further parallelize within each instance of sampling
by exploiting the parallelism in probing, book-keeping and
cleanup of DB, which is presented next.

Algorithm 3 shows the details of Dashboard-based parallel
frontier sampling, where all arrays are zero-based. Considering
the main loop (lines 16 to 25), we analyze the complexity
of the three functions in Algorithm 4. Denote COSTrand and
COSTmem as the cost to generate one random number and to
perform one memory access, respectively.

pardo POP FRONTIER: Anytime during sampling, on
average, the ratio of valid DB entries (those occupied by
current frontier vertices) over total number of DB entries is
1/η. Probability of one probing falling on a valid entry equals
1/η. Expected number of rounds for p processors to generate at
least 1 valid probing can be shown to be 1/

(
1−

(
1− 1

α

)p)
,

where one round refers to one repetition of lines 5 to 7 of
Algorithm 4. After selection of vpop, deg(vpop) number of slots
needs to be updated to invalid values INV. Since this operation
occurs (n − m) times, the para POP FRONTIER function
incurs (n−m)

(
1

1−(1−1/α)p · COSTrand +
d
p · COSTmem

)
cost.

pardo CLEANUP: Each time cleanup of DB happens,
we need one traversal of IA to calculate the cumulative sum of
indices (slot 1) masked by the status (slot 2), so as to obtain the
new location for each valid entries in DB. On expectation, only
η ·m entries of IA is filled, so this step costs η ·m. Afterwards,
only the valid entries in DB will be moved to the new, empty

Algorithm 3 Parallel Dashboard based frontier sampling

Input: Original graph G(V, E); Frontier size m; Budget n;
Enlargement factor η; Number of processors p

Output: Induced subgraph Gsub(Vsub, Esub)
1: d← |E|/|V|
2: DB← Array of R3×(η·m·d) with value INV . INValid
3: IA← Array of R2×(η·m·d+1) with value INV
4: FS← m vertices selected uniformly at random from V
5: Vsub ← { v | v ∈ FS }
6: FS← Indexable list of vertices converted from set FS
7: IA[0, 0]← 0; IA[1, 0]←True;
8: for i = 1 to m do . Initialize IA from FS
9: IA[0, i]← IA[0, i− 1] + deg(FS[i− 1])

10: IA[1, i]← (i 6= m)?True : False

11: for i = 0 to m− 1 pardo . Initialize DB from FS
12: for k = IA[i] to IA[i+ 1]− 1 do
13: DB[0, k]← FS[i]
14: DB[1, k]← (k 6= IA[i])?(k − IA[i]) : −deg(FS[i])
15: DB[2, k]← i

16: s← m
17: for i = m to n− 1 do . Sampling main loop
18: vpop ← pardo POP FRONTIER(DB,p)
19: vnew ← Vertex sampled from vpop’s neighbors
20: if deg(vnew) > η ·m · d− IA[0, s] + 1 then
21: DB← pardo CLEANUP(DB, IA, p)
22: s← m− 1

23: pardo ADD TO FRONTIER (vnew, s,DB, IA, p)
24: Vsub ← Vsub ∪ { vnew }
25: s← s+ 1

26: Gsub ← Subgraph of G induced by Vsub
27: return Gsub(Vsub, Esub)

DB based on the accumulated shift amount. This translates to
3 ·m · d number of memory operations. The para CLEANUP
function is fully parallelized. The cleanup happens only when
DB is full, i.e., n−m

(η−1)m times throughout sampling. Thus, the
cost of cleanup is n−m

(η−1)·m ·
3·m·d
p · COSTmem. We ignore the

cost of computing the cumulative sum as ηm� 3md.
pardo ADD TO FRONTIER: Adding a new frontier vn

to DB requires appending deg(vn) new entries to DB. This
corresponds to cost of (n−m) · 3·dp · COSTmem.

Overall cost to sample one subgraph with p processors is:

(
COSTrand

1− (1− 1/η)p
+

(
4 +

3

η − 1

)
d · COSTmem

p

)
· (n−m)

(2)

Assuming COSTmem = COSTrand, we have the following
scalability bound:

Theorem 1. For any given ε > 0, Algorithm 2 guarantees a
speedup of at least p

1+ε ,∀p ≤ εd
(
4 + 3

η−1

)
− η.

Proof. Note that 1
1−(1−1/η)p ≤

1
1−exp(−p/η) ≤

η+p
p . This

follows from 1
1−e−x = 1

1− 1
ex
≤ 1

1− 1
1+x

≤ x+1
x . Further, since



Algorithm 4 Functions in Dashboard Based Sampler

1: function PARDO POP FRONTIER(DB, p)
2: idxpop ←INV . Shared variable
3: for j = 0 to p− 1 pardo
4: while idxpop == INV do . Probing DB
5: idxp ← Index generated uniformly at random
6: if DB[0, idxp] 6= INV then
7: idxpop ← idxp
8: BARRIER
9: vpop ← DB[0, idxpop]

10: offset← DB[1, idxpop]
11: idxstart ← (offset > 0)?(idxstart − offset) : idxstart
12: deg← DB[1, idxstart]
13: for k = j · deg

p to (j +1) · deg
p − 1 do. Update DB

14: DB[0, k + idxstart]← INV

15: BARRIER
16: IA[1,DB[2, idxpop]]← False . Update IA
17: return vpop

18: function PARDO CLEANUP(DB, IA,p)
19: DBnew ← New, empty dashboard
20: k ← Cumulative sum of IA[0, :] masked by IA[1, :]
21: for i = 0 to p− 1 pardo
22: Move entries from DB to DBnew by offsets in k
23: for i = 0 to p− 1 pardo
24: Re-index IA based on DBnew

return DBnew

25: function PARDO ADD TO FRONTIER(vnew, i,DB, IA, p)
26: IA[0, i+ 1]← IA[0, i] + d; IA[1, i]← True;
27: idx← IA[0, i]
28: d← deg(vnew)
29: for j = 0 to p− 1 pardo
30: for k = idx + j · dp to idx + (j + 1) · dp − 1 do
31: DB[0, k]← n
32: DB[1, k]← (k 6= idx)?(k − idx) : −d
33: DB[2, k]← i

p ≤ εd(4 + 3/(η − 1)) − η, we have η+p
p ≤ εd(4+3/(η−1))

p .
Now, speedup obtained by Algorithm 2 compared to a serial
implementation (p = 1) is

(η + d(3/(η − 1) + 4)) (n−m)(
1

1−(1−1/η)p + d
p (3/(η − 1) + 4)

)
(n−m)

≥ d(3/(η − 1) + 4)
εd
p (3/(η − 1) + 4) + d

p (3/(η − 1) + 4)
≥ p

1 + ε
.

Setting ε = 0.5 and η = 3, Theorem 1 guarantees good
scalability (p/1.5) up to p = 2.25 ·d−3 processors. While the
scalability can be high for dense graphs, it is difficult to scale
the sampler to massive number of processors on sparse graphs.
The total parallelism available is bound by the graph degree.
In summary, the parallel Dashboard based frontier sampler
(1) leads to lower serial complexity by incremental update on
probability distribution, and (2) scales well up to p = O(d).

To further scale the sampler, we exploit task parallelism by
a GCN training scheduler. Since the topology of the training
graph G is fixed over the training iterations, sampling and GCN
computation can proceed in an interleaved fashion, without
any dependency constraints. By Algorithm 5, the scheduler
maintains a pool of sampled subgraphs { Gi }. When { Gi }
is empty, the scheduler launches pinter frontier samplers in
parallel, and fill { Gi } with subgraphs independently sampled
from the training graph G. Each of the pinter sampler instances
runs on pintra processing units. Thus, the scheduler exploits
both intra- and inter-subgraph parallelism. In each training
iteration, we remove a subgraph Gsub from { Gi }, and build a
complete GCN upon Gsub. Forward and backward propagation
stay unchanged as lines 4 to 13 in Algorithm 1.

During construction of { Gi }, total amount of parallelism
pintra · pinter is fixed on the target platform. The value of pintra
and pinter should be carefully chosen based on the trade-off
between the two levels of parallelism. Note that the operations
on DB mostly involve a chunk of memory with continuous
addresses. This indicates that intra-subgraph parallelism can be
well exploited at the instruction level using vector instructions
(e.g., AVX). In addition, note that most of the memory traffic
going into DB is in a random manner during sampling. This
indicates that ideally, DB should be stored in cache. As a
coarse estimate, with m = 1000, η = 2, d = 30, the memory
consumption by one DB is 480KB 1. This indicates that DB
mostly fits into the private L2 cache size (256KB) in modern
shared memory parallel machines. Therefore, during sampling,
we bind one sampler to one processor core, and use AVX
instructions to parallelize within a single sampler. For example,
on a 40-core machine with AVX2, pintra = 8 and pinter = 40.

Algorithm 5 GCN training with parallel frontier sampler

Input: Training graph G(V, E ,H(0)); Labels L; Sampler pa-
rameters m,n, η; Parallelization parameters pinter, pintra

Output: Trained weights
{
W

(`)
self ,W

(`)
neigh

∣∣∣ 1 ≤ ` ≤ L }
1: { Gi } ← ∅ . Set of unused subgraphs
2: while not terminate do . Iterate over mini-batches
3: if { Gi } is empty then
4: for p = 0 to pinter − 1 pardo
5: { Gi } ← { Gi } ∪ SAMPLEG(G,m, n, η, pintra)

6: Gsub ← Subgraph popped out from { Gi }
7:

{
V(`)

GS

}
,
{
E(`)GS

}
← GCN construction on Gsub

8: Forward and backward propagation of GCN
9: return

{
W

(`)
self

}
,
{
W

(`)
neigh

}

V. PARALLEL TRAINING ALGORITHM

In this section, we present parallelization techniques for
the forward and backward propagation. Specifically, the graph
sampling based GCN enables a simple partitioning scheme that
guarantees close-to-optimal feature propagation performance.

1We use INT32 for slot 1 of DB, and INT16 for slots 2 and 3.



A. Computation Kernels in Training

Forward and backward propagation involves two kernels:

• Feature propagation in subgraph (step
(
A

(`)
GS

)T
·H(`−1)

GS );
• Dense matrix multiplication (steps involving the weight

matrices W
(`)
neigh and W

(`)
self ).

We study the parallel feature propagation in Section V-B.
As for the computation on dense matrix multiplication, this
is a standard BLAS level 2 routine, which can be efficiently
parallelized using libraries such as Intel ® MKL [6].

B. Parallel Feature Propagation within Subgraph

During training, each of the V(`)
sub nodes pulls features from

its neighbors, along the inter-layer edges. Essentially, this can
be viewed as feature propagation within Gsub.

A similar problem, label propagation within graphs, has
been extensively studied in the literature. State-of-the-art meth-
ods based on vertex-centric [7], edge-centric [8] and partition-
centric [9] paradigms perform vertex partitioning on graphs
so that processors can work independently in parallel. The
work in [10] also performs label partitioning along with graph
partitioning when the label size is large. In our case, we borrow
the above ideas to allow two dimensional partitioning along
the graph as well as the feature dimensions. However, we also
realize that the aforementioned techniques may lead to sub-
optimal performance in our GCN, due to two reasons:
• The propagated data from each vertex is a long vector

rather than a single value label.
• Our graph sizes are small after graph sampling, so parti-

tioning of the graph may not lead to significant advantage.
Below, we analyze the computation and communication

costs of feature propagation after graph and feature partition-
ing. We temporarily ignore the issues of load-balancing and
pre-processing overhead, and address these issues later on. For
conciseness, we use G(V, E) to refer to Gsub(Vsub, Esub).

Suppose we partition G into Qv disjoint vertex par-
titions

{
V(i)

∣∣ 0 ≤ i ≤ Qv − 1
}

. Let the set of vertices
that send features to vertices in V(i) be V(i)

src ={
u
∣∣ (u, v) ∈ E ∧ v ∈ V(i)

}
. Note that V(i) ⊆ V(i)

src , since
we follow the design in [2] to add a self-connection to each
vertex. We further partition the feature vector hv ∈ Rf of
each vertex v into Qf equal parts

{
h
(i)
v

∣∣∣ 0 ≤ i ≤ Qf − 1
}

.
Each of the processors is responsible for propagation of
H(i,j) =

{
h
(j)
v

∣∣∣ v ∈ V(i)
src

}
, flowing from V(i)

src into V(i)

(where 0 ≤ i ≤ Qv − 1 and 0 ≤ j ≤ Qf − 1).

Define the ratio γv =
|V(i)

src |
|V| . While γv depends on the

partitioning algorithm, it is always bound by 1
Qv
≤ γv ≤ 1.

Let n = |V| and f = |hv|. So
∣∣V(i)

∣∣ = n
Qv

and
∣∣∣h(i)
v

∣∣∣ = f
Qf

.
In our performance model, we assume p processors oper-

ating in parallel. Each processor is associated with a private
fast memory (cache). The p processors share a slow memory
(DRAM). Our objective in partitioning is to minimize the over-
all processing time in the parallel system. After partitioning,
each processor owns Qv·Qf

p number of H(i,j), and propagates

its H(i,j) into V(i). Due to the irregularity of graph edge
connections, access into H(i,j) is random. On the other hand,
using CSR format, the neighbor lists of vertices in V(i) can be
streamed into the processor, without the need to stay in cache.
In summary, an optimal partitioning scheme should:
• Let each H(i,j) fit into the fast memory;
• Utilize all of the available parallelism;
• Minimize the total computation workload;
• Minimize the total slow-to-fast memory traffic.
Each round of feature propagation has n

Qv
·d · fQf

computa-
tion, and 2 · nQv

· d+8 ·n · γv · fQf
communication (in bytes)2.

Computation and computation over Qv ·Qf rounds are:

gcomp(Qv, Qf ) = n · d · f
gcomm(Qv, Qf ) = 2 ·Qf · n · d+ 8 ·Qv · n · f · γv (3)

Note that gcomp(Qv, Qf ) is independent of the partitioning
scheme. We formulate communication minimization problem:

minimize
Qv,Qf

gcomm(Qv, Qf ) = 2Qf · nd+ 8Qv · nfγv

subject to QvQf ≥ p;
8nfγv
Qf

≤ Scache; Qv, Qf ∈ Z+

(4)

Next, we prove that without any graph partitioning we can
obtain a 2-approximation for this problem for small subgraphs.

Theorem 2. Qv = 1, Qf = max
{
p, 8nf

Scache

}
results in

a 2-approximation of communication minimization problem,
irrespective of the partitioning algorithm, for p ≤ 4f

d and
2nd ≤ Scache.

Proof. Note that since Qv, Qf ≥ 1 and γv ≥ 1/Qv , ∀Qv, Qf :

gcomm(Qv, Qf ) ≥ 2Qfnd+ 8Qvnf
1

Qv
≥ 8nf.

Set Qv = 1 and Qf = max
{
p, 8nf

Scache

}
. Clearly, γv = 1.

a) Case 1, p ≥ 8nf
Scache

: In this case, Qf = p ≥ 8nf/Scache.
Thus both constraints are satisfied. And,

gcomm (1, p) = 2ndp+ 8nf

= 8nf

(
pd

4f
+ 1

)
≤ 8nf · (1 + 1) = 16nf ,

due to p ≤ 4f/d.
b) Case 2, p ≤ 8nf

Scache
: In this case, Qf = 8nf/Scache

forms a feasible solution. And,

gcomm

(
1,

8nf

Scache

)
= 2nd

8nf

Scache
+ 8nf

= 8nf

(
2nd

Scache
+ 1

)
≤ 8nf · (1 + 1) = 16nf.

2Given that sampled graphs are small, we use INT16 to represent the vertex
indices. We use DOUBLE to represent each feature value.



In both cases, the approximation ratio of our solution is

ensured to be:
gcomm

(
1,max

{
p, 8nf

Scache

})
min gcomm(Qv,Qf )

≤ 16nf
8nf = 2.

Note that this holds for Scache ≥ 2nd, which means for
a cache size of 256KB, number of (directed) edges in the
subgraph (nd) can be up to 128K, which is higher than that of
the subgraphs in consideration. Also, since f � d, p ≤ 4f/d
holds up to large values of p.

Using typical values n ≤ 8000, f = 512, and d = 15,
then for up to 136 cores3, the total slow-to-fast memory
traffic under feature only partitioning is less than 2 times the
optimal. Recall the two properties (listed at the beginning of
this section) that differentiate our case with traditional label
propagation. Because the graph size n is small enough, we can
find a feasible Qf ∈ Z+ solution to satisfy the cache constraint
8nf
Qf
≤ Scache. Because the value f is large enough, we can

find enough number of feature partitions such that Qf ≥ p.
Algorithm 6 shows details of our feature propagation.

Algorithm 6 Feature propagation within sampled graph

Input: Sampled graph G(V, E); Vertex features { hv }; Cache
size Scache; Number of processors p

Output: Updated features { hv }
1: n← |V| ; f ← |hv| ;
2: Qf ← max

{
p, 8nf

Scache

}
3: Equal partition each hv into

{
h
(i)
v

∣∣∣ 0 ≤ i ≤ Qf − 1
}

4: for r = 0 to Qf/p− 1 do
5: for i = 0 to p− 1 pardo
6: Propagation of

{
h
(i+r·p)
v

∣∣∣ v ∈ V } into V

7: return { hv }

Lastly, the feature only partitioning leads to two more im-
portant benefits. Since graph is not partitioned, load-balancing
is optimal across processors. Also, the partitioning along fea-
tures incurs almost zero pre-processing overhead. In summary,
the feature propagation in our graph sampling-based GCN
achieves 1) Minimal computation; 2) Optimal load-balancing;
3) Zero pre-processing cost; 4) Low communication volume.

VI. EXPERIMENTS

A. Experimental Setup

We conduct our experiments on 4 large scale graph datasets:
• PPI: A protein-protein interaction graph [11]. A vertex

represents a protein and edges represent interactions.
• Reddit: A post-post graph [11]. A vertex represents a

post. An edge exists between two posts if the same user
has commented on both posts.

• Yelp: A social network graph [12]. A vertex is a user.
An edge represents friendship. Vertex attributes are user
comments converted from text using Word2Vec [13].

3Note that d here refers to the average degree of the sampled graph rather
than the training graph. Thus, d value here is lower than that in Section IV.

• Amazon: An item-item graph. A vertex is a product sold
by Amazon. An edge is present if two items are bought by
the same customer. Vertex attributes are converted from
bag-of-words of text item descriptions using singular
value decomposition (SVD).

The PPI and Reddit datasets are used in [1], [2]. Note that the
Reddit graph is currently the largest one evaluated by state-of-
the-art embedding methods, such as [2], [3], [14]. We further
prepare two graphs of much larger sizes (Yelp, Amazon), to
evaluate scaling more thoroughly. Table I shows the details.

TABLE I: Dataset Statistics

Dataset Vertices Edges Attribute Classes Train/Val/Test

PPI 14,755 225,270 50 121 (M) 0.66/0.12/0.22
Reddit 232,965 11,606,919 602 41 (S) 0.66/0.10/0.24
Yelp 716,847 6,977,410 300 100 (M) 0.75/0.15/0.10

Amazon 1,598,960 132,169,734 200 107 (M) 0.80/0.05/0.15

* The (M) mark stands for Multi-class classification, while (S) stands for Single-class.

For our graph sampling-based GCN, we provide two imple-
mentations, in Python (with Tensorflow) and C++, respec-
tively 4. The two implementations follow an identical training
algorithm (Algorithm 5). We use the Python (Tensorflow)
version for single threaded accuracy evaluation in Section
VI-B, since all baseline implementations are provided in
Python with Tensorflow. We use the C++ version to measure
scalability of our parallel training (Section VI-C). The C++
implementation is necessary, since Python and Tensorflow
are not flexible enough for parallel computing experiments
(e.g., AVX and thread binding are not explicit in Python).

We run experiments on a dual 20-Core Intel® Xeon E5-
2698 v4 @2.2GHz machine with 512GB of DDR4 RAM. For
the Python implementation, we use Python 3.6.5 with Ten-
sorflow 1.10.0. For the C++ implementation, the compilation is
via Intel® ICC (-O3 flag). ICC, MKL and OMP are included
in Intel® Parallel Studio Xe 2018 update 3.

B. Evaluation on Accuracy and Efficiency

Our graph sampling-based GCN model significantly reduces
training complexity without accuracy loss. To eliminate the
impact of different parallelization strategies on training time,
here we run our implementation as well as all the baselines
using single thread. Figure 2 shows the accuracy (F1 micro
score) vs sequential training time plots. Since all baselines
report accuracy using 2 layers in their original papers, all mea-
surements here are based on a 2-layer GCN model. Accuracy is
tested on the validation set at the end of each epoch. Between
the baselines, [2] achieves the highest accuracy and fastest
convergence. Compared with [2], our GCN model achieves
higher accuracy on PPI and Reddit, and the same accuracy
on Yelp and Amazon. To measure training time speedup, we
define an accuracy threshold for each of the datasets. Let a0
be the highest accuracy achieved by the baselines. We define
the threshold5 as a0 − 0.0025. Serial training time speedup is

4Code available at https://github.com/ZimpleX/gcn-ipdps19
5Due to stochasticity in training, we allow 0.25% variance in accuracy.
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Fig. 3: Scaling evaluation with hidden feature dimensions: 512 (Upper), 1024 (Lower)

calculated with respect to training time for the best performing
baseline to reach the threshold divided by training time for our
model to reach the threshold. We achieve a serial training time
speedup of 1.9×, 7.8×, 4.7× and 2.1× for PPI, Reddit, Yelp
and Amazon, respectively.

C. Evaluation on Scalability

1) Scaling of overall training: For our GCN model, Figure
3 shows the parallel training speedup relative to sequential
execution. The execution time includes every training steps
specified by lines 2 to 8, Algorithm 5 — sampling (with
AVX enabled), feature propagation (forward and backward)
and weight application (forward and backward). As before,
we evaluate scaling on a 2-layer GCN, with small and large
hidden dimensions (f (0) = f (1) = 512 and 1024). The training
is highly scalable, consistently achieving around 20× speedup
on 40-cores for all datasets. The performance breakdown in
Figure 3 suggests that sampling time corresponds to only a
small portion of the total time. This is due to 1) low serial
complexity of our Dashboard based implementation; 2) highly
scalable design using intra- and inter-subgraph parallelism.
The main scaling bottleneck is the weight application step
using dense matrix multiplication. To some extent, the scaling
is data dependent. High-centrality vertices in the training graph
are more likely to be sampled, making caching across training
iterations a non-negligible factor. The time on dense matrix
multiplication becomes more significant with more processors.

2) Scaling of parallel frontier sampling: We evaluate the
effect of both intra- and inter-subgraph parallelism. The AVX2
instructions supported by our target platform translate to
maximum of 8 intra-subgraph parallelism (pintra = 8). The total
of 40 Xeon cores makes 1 ≤ pinter ≤ 40. Figure 4A shows the
effect of pinter, when pintra = 8 (i.e., we launch 1 ≤ pinter ≤ 40
independent samplers, where AVX is enabled within each
sampler). Sampling is highly scalable with inter-subgraph
parallelism. We observe that scaling degrades from 20 to 40
cores, due to NUMA effects on cross socket communication
— all the pinter samplers on the two sockets keep reading a
single copy of the training graph adjacency list, when selecting
the next frontier vertices. Figure 4B shows the effect of pintra
under various pinter. The bars show the speedup of using AVX
instructions comparing with otherwise. We achieve around 4×
speedup on average. The scaling on pintra is data dependent.
Depending on the degree distribution of the training graph,
there may be significant portion of vertices with less than 8
neighbors. Such load-imbalance explains the discrepancy from
the theoretical modeling. As a side-note, for highly skewed
graphs such as Amazon, we allocate no more than 30 DB
entries to a vertex (regardless of its actual degree), in order to
upper bound the probability of popping it from the frontier.
This helps accuracy improvement on graphs with skewed
degree distributions, since it prevents the situation where all
subgraphs contain mostly the same set of vertices.
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3) Scaling of feature propagation: Figure 3 shows the
scaling of feature propagation using the partitioning scheme
presented in Section V-B. We achieve high scaling (around
25× speedup on 40 cores) for all datasets for various feature
sizes, due to our caching strategy and optimal load-balancing.

4) Scaling of weight application: As discussed in Sec-
tion V-A, the weight application is implemented by
cblas_dgemm routine of Intel® MKL [6]. All optimizations
are internal to the library. Figure 3 shows the scaling result.
On 40 cores, average of 16× speedup is achieved. We spec-
ulate that the overhead of MKL’s internal thread and buffer
management is the bottleneck on further scaling.

D. Deeper Learning

Though state-of-the-art methods do not provide accuracy
results on deeper GCN models, adding more layers in a neural
network is proven to be very effective in increasing the expres-
sive power (and thus accuracy) of the network [15]. Here we
evaluate the speedup of our GCN implementation compared
with [2], under various number of layers and processors. The
speedup is calculated by comparing our C++ implementation
with a Python one, whose parallelism is internally highly
optimized via Tensorflow. Use Reddit dataset as an example,
Table II shows the speedup. Our implementation achieves
significantly higher speedup in deeper GCNs (335× for a
3-layer model, under single thread comparison) as well as
with more processors (37.4× for a standard 2-layer model,
using 40 cores). This demonstrates the better scalability of
our implementation, and verifies the conclusion in Section
III-B. Note that due to “neighbor explosion”, for every unit
of computation, [2] requires approximately dLS times more
communication compared with our model. This explains the
scalability results with respect to number of processors. In
summary, despite the programming language overheads, the
better performance of our design is mainly due to the efficient
GCN algorithm and parallelization strategies. Accuracy eval-
uation for deeper GCN models is out of scope of this paper.

TABLE II: Speedup Comparison with Parallelized [2] (Reddit)

1-core 5-core 10-core 20-core 40-core

1-layer 2.03× 4.77× 9.34× 17.25× 23.93×
2-layer 7.74× 12.95× 18.50× 28.43× 37.44×
3-layer 335.36× 568.93× 828.25× 1164.45× 1306.21×

VII. CONCLUSION AND FUTURE WORK

We presented an accurate, efficient and scalable graph
embedding method. Considering the redundant computation
in current GCN training, we proposed a graph sampling-based
method which ensures accuracy and efficiency by constructing
a new GCN on a small sampled subgraph in every iteration. We
further proposed parallelization techniques to scale the graph
sampling and overall training to large number of processors.

We will extend our graph sampling-based GCN by evalu-
ating impact on accuracy using various sampling algorithms.
We will extend the parallel sampler implementation to support
a wider class of sampling algorithms. We will also work on
the theoretical foundation of the graph sampling-based GCN.
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